Fernando García-Moreno
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando García-Moreno.
Neuron | 2011
T. Grant Belgard; Ana C. Marques; Peter L. Oliver; Hatice Ozel Abaan; Tamara Sirey; Anna Hoerder-Suabedissen; Fernando García-Moreno; Zoltán Molnár; Elliott H. Margulies; Chris P. Ponting
Summary In the mammalian cortex, neurons and glia form a patterned structure across six layers whose complex cytoarchitectonic arrangement is likely to contribute to cognition. We sequenced transcriptomes from layers 1-6b of different areas (primary and secondary) of the adult (postnatal day 56) mouse somatosensory cortex to understand the transcriptional levels and functional repertoires of coding and noncoding loci for cells constituting these layers. A total of 5,835 protein-coding genes and 66 noncoding RNA loci are differentially expressed (“patterned”) across the layers, on the basis of a machine-learning model (naive Bayes) approach. Layers 2-6b are each associated with specific functional and disease annotations that provide insights into their biological roles. This new resource (http://genserv.anat.ox.ac.uk/layers) greatly extends currently available resources, such as the Allen Mouse Brain Atlas and microarray data sets, by providing quantitative expression levels, by being genome-wide, by including novel loci, and by identifying candidate alternatively spliced transcripts that are differentially expressed across layers.
Cerebral Cortex | 2012
Fernando García-Moreno; Navneet A. Vasistha; Nonata Trevia; James A. Bourne; Zoltán Molnár
Previous studies of macaque and human cortices identified cytoarchitectonically distinct germinal zones; the ventricular zone inner subventricular zone (ISVZ), and outer subventricular zone (OSVZ). To date, the OSVZ has only been described in gyrencephalic brains, separated from the ISVZ by an inner fiber layer and considered a milestone that triggered increased neocortical neurogenesis. However, this observation has only been assessed in a handful of species without the identification of the different progenitor populations. We examined the Amazonian rodent agouti (Dasyprocta agouti) and the marmoset monkey (Callithrix jacchus) to further understand relationships among progenitor compartmentalization, proportions of various cortical progenitors, and degree of cortical folding. We identified a similar cytoarchitectonic distinction between the OSVZ and ISVZ at midgestation in both species. In the marmoset, we quantified the ventricular and abventricular divisions and observed similar proportions as previously described for the human and ferret brains. The proportions of radial glia, intermediate progenitors, and outer radial glial cell (oRG) populations were similar in midgestation lissencephalic marmoset as in gyrencephalic human or ferret. Our findings suggest that cytoarchitectonic subdivisions of SVZ are an evolutionary trend and not a primate specific feature, and a large population of oRG can be seen regardless of cortical folding.
The Journal of Comparative Neurology | 2007
Fernando García-Moreno; Laura López-Mascaraque; Juan A. De Carlos
The first layer that appears in the cortical neuroepithelium, the preplate, forms in the upper part of the cortex immediately below the pial surface. In mice, this layer exists between embryonic days (E) 10 and 13, and it hosts different cell populations. Here, we have studied the first cell population generated in the preplate, the Cajal‐Retzius cells. There is considerable confusion regarding these cells with respect to both their site of generation and the migratory routes that they follow. This perhaps is due largely to the different opinions that exist regarding their characterization. We have studied the site of origin of these cells, their migratory routes, and the molecular markers that may distinguish them by injecting tracers into early embryos, culturing them in toto for 24 hours, and then performing immunohistochemistry. We found that the Cajal‐Retzius cells are most likely generated in the cortical hem by comparing with other cortical or extracortical origins. These cells are generated mainly at E10 and E11, and they subsequently migrate tangentially to cover the whole cortical mantle in 24 hours. From their site of origin in the medial wall of the telencephalon, they spread in a caudorostral direction, following an oblique migratory path toward the lateral part of the neuroepithelium. Prior to the splitting of the preplate, a percentage of the Cajal‐Retzius cells that can be distinguished by the expression of reelin do not contain calretinin. Furthermore, there were no early‐migrating neurons that expressed calbindin. J. Comp. Neurol. 500:419–432, 2007.
Cell Reports | 2017
Katharine Askew; Kaizhen Li; Adrian Olmos-Alonso; Fernando García-Moreno; Yajie Liang; Philippa Richardson; Tom Tipton; Mark A. Chapman; Kristoffer Riecken; Sol Beccari; Amanda Sierra; Zoltán Molnár; Mark S. Cragg; Olga Garaschuk; V. Hugh Perry; Diego Gomez-Nicola
Summary Microglia play key roles in brain development, homeostasis, and function, and it is widely assumed that the adult population is long lived and maintained by self-renewal. However, the precise temporal and spatial dynamics of the microglial population are unknown. We show in mice and humans that the turnover of microglia is remarkably fast, allowing the whole population to be renewed several times during a lifetime. The number of microglial cells remains steady from late postnatal stages until aging and is maintained by the spatial and temporal coupling of proliferation and apoptosis, as shown by pulse-chase studies, chronic in vivo imaging of microglia, and the use of mouse models of dysregulated apoptosis. Our results reveal that the microglial population is constantly and rapidly remodeled, expanding our understanding of its role in the maintenance of brain homeostasis.
Cerebral Cortex | 2015
Navneet A. Vasistha; Fernando García-Moreno; Siddharth Arora; Amanda F.P. Cheung; Sebastian J. Arnold; Elizabeth J. Robertson; Zoltán Molnár
The individual contribution of different progenitor subtypes towards the mature rodent cerebral cortex is not fully understood. Intermediate progenitor cells (IPCs) are key to understanding the regulation of neuronal number during cortical development and evolution, yet their exact contribution is much debated. Intermediate progenitors in the cortical subventricular zone are defined by expression of T-box brain-2 (Tbr2). In this study we demonstrate by using the Tbr2Cre mouse line and state-of-the-art cell lineage labeling techniques, that IPC derived cells contribute substantial proportions 67.5% of glutamatergic but not GABAergic or astrocytic cells to all cortical layers including the earliest generated subplate zone. We also describe the laminar dispersion of clonally derived cells from IPCs using a recently described clonal analysis tool (CLoNe) and show that pair-generated cells in different layers cluster closer (142.1 ± 76.8 μm) than unrelated cells (294.9 ± 105.4 μm). The clonal dispersion from individual Tbr2 positive intermediate progenitors contributes to increasing the cortical surface. Our study also describes extracortical contributions from Tbr2+ progenitors to the lateral olfactory tract and ventromedial hypothalamic nucleus.
Nature Neuroscience | 2010
Fernando García-Moreno; María Pedraza; Luca Giovanni Di Giovannantonio; Michela Di Salvio; Laura López-Mascaraque; Antonio Simeone; Juan A. De Carlos
Neurons usually migrate and differentiate in one particular encephalic vesicle. We identified a murine population of diencephalic neurons that colonized the telencephalic amygdaloid complex, migrating along a tangential route that crosses a boundary between developing brain vesicles. The diencephalic transcription factor OTP was necessary for this migratory behavior.
Proceedings of the National Academy of Sciences of the United States of America | 2013
T G Belgard; Wei-Zhi Wang; Fernando García-Moreno; Elliott H. Margulies; Chris P. Ponting; Zoltán Molnár
The thorniest problem in comparative neurobiology is the identification of the particular brain region of birds and reptiles that corresponds to the mammalian neocortex [Butler AB, Reiner A, Karten HJ (2011) Ann N Y Acad Sci 1225:14–27; Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Proc Natl Acad Sci USA 107(28):12676–12681]. We explored which genes are actively transcribed in the regions of controversial ancestry in a representative bird (chicken) and mammal (mouse) at adult stages. We conducted four analyses comparing the expression patterns of their 5,130 most highly expressed one-to-one orthologous genes that considered global patterns of expression specificity, strong gene markers, and coexpression networks. Our study demonstrates transcriptomic divergence, plausible convergence, and, in two exceptional cases, conservation between specialized avian and mammalian telencephalic regions. This large-scale study potentially resolves the complex relationship between developmental homology and functional characteristics on the molecular level and settles long-standing evolutionary debates.
Cerebral Cortex | 2012
Franziska Oeschger; Wei-Zhi Wang; Sheena Lee; Fernando García-Moreno; André M. Goffinet; Maria L. Arbonés; Sonja Rakic; Zoltán Molnár
The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day (E) 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared with the cortical plate at this stage. Using quantitative reverse transcription-polymerase chain reaction, in situ hybridization (ISH), and immunohistochemistry (IHC), we have confirmed specific expression in the E15.5 subplate for 13 selected genes, which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c, and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to synapse formation and axonal growth and guidance in subplate cells.
Cerebral Cortex | 2011
Wei Zhi Wang; Franziska Oeschger; Fernando García-Moreno; Anna Hoerder-Suabedissen; Leah Krubitzer; C J Ek; Norman R. Saunders; Kerstin Reim; Aldo Villalón; Zoltán Molnár
There is currently a debate about the evolutionary origin of the earliest generated cortical preplate neurons and their derivatives (subplate and marginal zone). We examined the subplate with murine markers including nuclear receptor related 1 (Nurr1), monooxygenase Dbh-like 1 (Moxd1), transmembrane protein 163 (Tmem163), and connective tissue growth factor (Ctgf) in developing and adult turtle, chick, opossum, mouse, and rat. Whereas some of these are expressed in dorsal pallium in all species studied (Nurr1, Ctgf, and Tmem163), we observed that the closely related mouse and rat differed in the expression patterns of several others (Dopa decarboxylase, Moxd1, and thyrotropin-releasing hormone). The expression of Ctgf, Moxd1, and Nurr1 in the oppossum suggests a more dispersed subplate population in this marsupial compared with mice and rats. In embryonic and adult chick brains, our selected subplate markers are primarily expressed in the hyperpallium and in the turtle in the main cell dense layer of the dorsal cortex. These observations suggest that some neurons that express these selected markers were present in the common ancestor of sauropsids and mammals.
Frontiers in Neuroanatomy | 2011
Wei Zhi Wang; Franziska Oeschger; Anna Hoerder-Suabedissen; Wan Ling Tung; Fernando García-Moreno; Ida E. Holm; Aldo Villalón; Zoltán Molnár
The development of the mammalian neocortex relies heavily on subplate. The proportion of this cell population varies considerably in different mammalian species. Subplate is almost undetectable in marsupials, forms a thin, but distinct layer in mouse and rat, a larger layer in carnivores and big-brained mammals as pig, and a highly developed embryonic structure in human and non-human primates. The evolutionary origin of subplate neurons is the subject of current debate. Some hypothesize that subplate represents the ancestral cortex of sauropsids, while others consider it to be an increasingly complex phylogenetic novelty of the mammalian neocortex. Here we review recent work on expression of several genes that were originally identified in rodent as highly and differentially expressed in subplate. We relate these observations to cellular morphology, birthdating, and hodology in the dorsal cortex/dorsal pallium of several amniote species. Based on this reviewed evidence we argue for a third hypothesis according to which subplate contains both ancestral and newly derived cell populations. We propose that the mammalian subplate originally derived from a phylogenetically ancient structure in the dorsal pallium of stem amniotes, but subsequently expanded with additional cell populations in the synapsid lineage to support an increasingly complex cortical plate development. Further understanding of the detailed molecular taxonomy, somatodendritic morphology, and connectivity of subplate in a comparative context should contribute to the identification of the ancestral and newly evolved populations of subplate neurons.