Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando González-Candelas is active.

Publication


Featured researches published by Fernando González-Candelas.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes

Rosario Gil; Francisco J. Silva; Evelyn Zientz; François Delmotte; Fernando González-Candelas; Amparo Latorre; Carolina Rausell; Judith Kamerbeek; Jürgen Gadau; Bert Hölldobler; Roeland C. H. J. van Ham; Roy Gross; Andrés Moya

Bacterial symbioses are widespread among insects, probably being one of the key factors of their evolutionary success. We present the complete genome sequence of Blochmannia floridanus, the primary endosymbiont of carpenter ants. Although these ants feed on a complex diet, this symbiosis very likely has a nutritional basis: Blochmannia is able to supply nitrogen and sulfur compounds to the host while it takes advantage of the host metabolic machinery. Remarkably, these bacteria lack all known genes involved in replication initiation (dnaA, priA, and recA). The phylogenetic analysis of a set of conserved protein-coding genes shows that Bl. floridanus is phylogenetically related to Buchnera aphidicola and Wigglesworthia glossinidia, the other endosymbiotic bacteria whose complete genomes have been sequenced so far. Comparative analysis of the five known genomes from insect endosymbiotic bacteria reveals they share only 313 genes, a number that may be close to the minimum gene set necessary to sustain endosymbiotic life.


Theoretical and Applied Genetics | 1996

Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]

S. M. Brown; M. S. Hopkins; S. E. Mitchell; M. L. Senior; T. Y. Wang; R. R. Duncan; Fernando González-Candelas; Stephen Kresovich

Simple sequence repeats (SSRs), also known as microsatellites, are highly variable DNA sequences that can be used as markers for the genetic analysis of plants. Three approaches were followed for the development of PCR primers for the amplification of DNA fragments containing SSRs from sorghum [Sorghum bicolor (L.) Moench]: a search for sorghum SSRs in public DNA databases; the use of SSR-specific primers developed in the Poaceae species maize (Zea mays L.) and seashore paspalum grass (Paspalum vaginatum Swartz); and the screening of sorghum genomic libraries by hybridization with SSR oligonucleotides. A total of 49 sorghum SSR-specific PCR primer pairs (two designed from GenBank SSR-containing sequences and 47 from the sequences of genomic clones) were screened on a panel of 17 sorghum and one maize accession. Ten primer pairs from paspalum and 90 from maize were also screened for polymorphism in sorghum. Length polymorphisms among amplification products were detected with 15 of these primer pairs, yielding diversity values ranging from 0.2 to 0.8 with an average diversity of 0.56. These primer pairs are now available for use as markers in crop improvement and conservation efforts.


PLOS Neglected Tropical Diseases | 2008

Phylogeography and Genetic Variation of Triatoma dimidiata, the Main Chagas Disease Vector in Central America, and Its Position within the Genus Triatoma

María Dolores Bargues; D.R. Klisiowicz; Fernando González-Candelas; Janine M. Ramsey; Carlota Monroy; Carlos Ponce; Paz María Salazar-Schettino; Francisco Panzera; Fernando Abad-Franch; Octavio E. Sousa; C. J. Schofield; Jean-Pierre Dujardin; Felipe Guhl; Santiago Mas-Coma

Background Among Chagas disease triatomine vectors, the largest genus, Triatoma, includes species of high public health interest. Triatoma dimidiata, the main vector throughout Central America and up to Ecuador, presents extensive phenotypic, genotypic, and behavioral diversity in sylvatic, peridomestic and domestic habitats, and non-domiciliated populations acting as reinfestation sources. DNA sequence analyses, phylogenetic reconstruction methods, and genetic variation approaches are combined to investigate the haplotype profiling, genetic polymorphism, phylogeography, and evolutionary trends of T. dimidiata and its closest relatives within Triatoma. This is the largest interpopulational analysis performed on a triatomine species so far. Methodology and Findings Triatomines from Mexico, Guatemala, Honduras, Nicaragua, Panama, Cuba, Colombia, Ecuador, and Brazil were used. Triatoma dimidiata populations follow different evolutionary divergences in which geographical isolation appears to have had an important influence. A southern Mexican–northern Guatemalan ancestral form gave rise to two main clades. One clade remained confined to the Yucatan peninsula and northern parts of Chiapas State, Guatemala, and Honduras, with extant descendants deserving specific status. Within the second clade, extant subspecies diversity was shaped by adaptive radiation derived from Guatemalan ancestral populations. Central American populations correspond to subspecies T. d. dimidiata. A southern spread into Panama and Colombia gave the T. d. capitata forms, and a northwestern spread rising from Guatemala into Mexico gave the T. d. maculipennis forms. Triatoma hegneri appears as a subspecific insular form. Conclusions The comparison with very numerous Triatoma species allows us to reach highly supported conclusions not only about T. dimidiata, but also on different, important Triatoma species groupings and their evolution. The very large intraspecific genetic variability found in T. dimidiata sensu lato has never been detected in a triatomine species before. The distinction between the five different taxa furnishes a new frame for future analyses of the different vector transmission capacities and epidemiological characteristics of Chagas disease. Results indicate that T. dimidiata will offer problems for control, although dwelling insecticide spraying might be successful against introduced populations in Ecuador.


Journal of Virology | 2009

Effect of Ribavirin on the Mutation Rate and Spectrum of Hepatitis C Virus In Vivo

José M. Cuevas; Fernando González-Candelas; Andrés Moya; Rafael Sanjuán

ABSTRACT Their extremely error-prone replication makes RNA viruses targets for lethal mutagenesis. In the case of hepatitis C virus (HCV), the standard treatment includes ribavirin, a base analog with an in vitro mutagenic effect, but the in vivo mode of action of ribavirin remains poorly understood. Here, we test the mutagenic effects of ribavirin plus interferon treatment in vivo using a new method to estimate mutation rates based on the analysis of nonsense mutations. We apply this methodology to a large HCV sequence database containing over 15,000 reverse transcription-PCR molecular clone sequences from 74 patients infected with HCV. We obtained an estimate of the spontaneous mutation rate of ca. 10−4 substitutions per site or lower, a value within the typically accepted range for RNA viruses. A roughly threefold increase in mutation rate and a significant shift in mutation spectrum were observed in samples from patients undergoing 6 months of interferon plus ribavirin treatment. This result is consistent with the known in vitro mutagenic effect of ribavirin and suggests that the antiviral effect of ribavirin plus interferon treatment is at least partly exerted through lethal mutagenesis.


Molecular Biology and Evolution | 2008

Evolution of Snake Venom Disintegrins by Positive Darwinian Selection

Paula Juárez; Iñaki Comas; Fernando González-Candelas; Juan J. Calvete

PII-disintegrins, cysteine-rich polypeptides broadly distributed in the venoms of geographically diverse species of vipers and rattlesnakes, antagonize the adhesive functions of beta(1) and beta(3) integrin receptors. PII-disintegrins evolved in Viperidae by neofunctionalization of disintegrin-like domains of duplicated PIII-snake venom hemorrhagic metalloproteinase (SVMP) genes recruited into the venom proteome before the radiation of the advanced snakes. Minimization of the gene (loss of introns and coding regions) and the protein structures (successive loss of disulfide bonds) underpins the postduplication divergence of disintegrins. However, little is known about the underlying genetic mechanisms that have generated the structural and functional diversity among disintegrins. Phylogenetic inference and maximum likelihood-based codon substitution approaches were used to analyze the evolution of the disintegrin family. The topology of the phylogenetic tree does not parallel that of the species tree. This incongruence is consistent with that expected for a multigene family undergoing a birth-and-death process in which the appearance and disappearance of loci are being driven by selection. Cysteine and buried residues appear to be under strong purifying selection due to their role in maintaining the active conformation of disintegrins. Divergence of disintegrins is strongly influenced by positive Darwinian selection causing accelerated rate of substitution in a substantial proportion of surface-exposed disintegrin residues. Global and lineage-specific sites evolving under diversifying selection were identified. Several sites are located within the integrin-binding loop and the C-terminal tail, two regions that form a conformational functional epitope. Arginine-glycine-aspartic acid (RGD) was inferred to represent the ancestral integrin-recognition motif, which emerged from the subgroup of PIII-SVMPs bearing the RDECD sequence. The most parsimonious nucleotide substitution model required for the emergence of all known disintegrins integrin inhibitory motifs from an ancestral RGD sequence involves a minimum of three mutations. The adaptive advantage of the emergence of motifs targeting beta(1) integrins and the role of positively selected sites located within nonfunctional disintegrin regions appear to be difficult to rationalize in the context of a predator-prey arms race. Perhaps, this represents a consequence of the neofunctionalization potential of the disintegrin domain, a feature that may underlie its recruitment into the venom proteome followed by its successful transformation into a toxin.


Molecular Phylogenetics and Evolution | 2002

Evolution of arginine deiminase (ADI) pathway genes

Manuel Zúñiga; Gaspar Pérez; Fernando González-Candelas

We have analyzed the evolution of the three genes encoding structural enzymes of the arginine deiminase (ADI) pathway, arginine deiminase (ADI), ornithine transcarbamoylase (OTC), and carbamate kinase (CK) in a wide range of organisms, including Archaea, Bacteria, and Eukarya. This catabolic route was probably present in the last common ancestor to all the domains of life. The results obtained indicate that these genes have undergone a complex evolutionary history, including horizontal transfer events, duplications, and losses. Therefore, these genes are not adequate to infer organismal relationships at deep branching levels, but they provide an insight into how catabolic genes evolved and were assembled into metabolic pathways. Our results suggest that the three genes evolved independently and were later assembled into a single cluster with functional interdependence, thus, providing support for the gene recruitment hypothesis. Furthermore, the molecular phylogenetic analysis of OTC suggests a new classification of these genes into three subfamilies.


The Journal of Infectious Diseases | 2014

Whole Genome Sequencing Analysis of Intrapatient Microevolution in Mycobacterium tuberculosis: Potential Impact on the Inference of Tuberculosis Transmission

Laura Pérez-Lago; Iñaki Comas; Yurena Navarro; Fernando González-Candelas; Marta Herranz; Emilio Bouza; Darío García-de-Viedma

BACKGROUND It has been accepted that the infection by Mycobacterium tuberculosis (M. tuberculosis) can be more heterogeneous than considered. The emergence of clonal variants caused by microevolution events leading to population heterogeneity is a phenomenon largely unexplored. Until now, we could only superficially analyze this phenomenon by standard fingerprinting (RFLP and VNTR). METHODS In this study we applied whole genome sequencing for a more in-depth analysis of the scale of microevolution both at the intrapatient and interpatient scenarios. RESULTS We found that the amount of variation accumulated within a patient can be as high as that observed between patients along a chain of transmission. Intrapatient diversity was found both at the extrapulmonary and respiratory sites, meaning that this variability can be transmitted and impact on the inference of transmission events. One of the events studied allowed us to track for a single strain the complete process of (i) interpatient microevolution, (ii) intrapatient respiratory variation, and (iii) isolation of different variants at different infected sites of this patient. CONCLUSIONS Our study adds new data to the understanding of variability in M. tuberculosis in a wide clinical scenario and alerts about the difficulties of establishing thresholds to differentiate relatedness in M. tuberculosis with epidemiological purposes.


PLOS Pathogens | 2010

Evolutionary Trajectories of Beta-Lactamase CTX-M-1 Cluster Enzymes: Predicting Antibiotic Resistance

Ângela Novais; Iñaki Comas; Fernando Baquero; Rafael Cantón; Teresa M. Coque; Andrés Moya; Fernando González-Candelas; Juan-Carlos Galán

Extended-spectrum beta-lactamases (ESBL) constitute a key antibiotic-resistance mechanism affecting Gram-negative bacteria, and also an excellent model for studying evolution in real time. A shift in the epidemiology of ESBLs is being observed, which is characterized by the explosive diversification and increase in frequency of the CTX-M-type β-lactamases in different settings. This provides a unique opportunity for studying a protein evolutionary radiation by the sequential acquisition of specific mutations enhancing protein efficiency and fitness concomitantly. The existence of driver antibiotic molecules favoring protein divergence has been investigated by combining evolutionary analyses and experimental site-specific mutagenesis. Phylogenetic reconstruction with all the CTX-M variants described so far provided a hypothetical evolutionary scenario showing at least three diversification events. CTX-M-3 was likely the enzyme at the origin of the diversification in the CTX-M-1 cluster, which was coincident with positive selection acting on several amino acid positions. Sixty-three CTX-M-3 derivatives containing all combinations of mutations under positively selected positions were constructed, and their phenotypic efficiency was evaluated. The CTX-M-3 diversification process can only be explained in a complex selective landscape with at least two antibiotics (cefotaxime and ceftazidime), indicating the need to invoke mixtures of selective drivers in order to understand the final evolutionary outcome. Under this hypothesis, we found congruent results between the in silico and in vitro analyses of evolutionary trajectories. Three pathways driving the diversification of CTX-M-3 towards the most complex and efficient variants were identified. Whereas the P167S pathway has limited possibilities of further diversification, the D240G route shows a robust diversification network. In the third route, drift may have played a role in the early stages of CTX-M-3 evolution. Antimicrobial agents should not be considered only as selectors for efficient mechanisms of resistance but also as diversifying agents of the evolutionary trajectories. Different trajectories were identified using a combination of phylogenetic reconstructions and directed mutagenesis analyses, indicating that such an approach might be useful to fulfill the desirable goal of predicting evolutionary trajectories in antimicrobial resistance.


Molecular Ecology | 1997

Analysis of population genetic structure and variability using RAPD markers in the endemic and endangered Limonium dufourii (Plumbaginaceae)

Carmen Palacios; Fernando González-Candelas

Limonium dufourii (Plumbaginaceae) is a triploid species, with apomictic reproduction, endemic to the east mediterranean coast of Spain, where it is present in only six populations with a few individuals in most of them. L. dufourii is included in the Red List of Endangered Species by the IUCN. Genetic variation and population structure in this species has been studied using RAPDs. Twelve different primers provided 124 reliable bands of which 33 were polymorphic among the 165 individuals analysed. Those polymorphic bands were able to define 44 different patterns, of which all but six were present in only one population. Several methods for statistical evaluation have been used for intra‐ and interpopulation analysis of genetic variability. Relationships among patterns have led to the identification of four main clusters. Two of them show a perfect correspondence to the population of origin of those individuals that present them (Cullera and Torreblanca), and the other two (Groups A and B) include patterns found in individuals coexisting in the same populations (Marjal del Moro populations) and in El Saler. Most of the variation found in this species is due to differences among populations as shown by the analysis of molecular variance. This agrees with the expectation for an apomictic species such as L. dufourii. The analysis of homogeneity of variance shows that substantial differences in the amount of genetic variability present in the six populations exist. These results have been used to understand the evolutionary and demographic history of L. dufourii, which is a requisite in order to establish efficient conservation measures for this species.


Emerging Infectious Diseases | 2011

Enterovirus co-infections and onychomadesis after hand, foot, and mouth disease, Spain, 2008.

María Alma Bracho; Fernando González-Candelas; Ana Valero; Juan Córdoba; Antonio Salazar

Mixed infection of enteroviruses may explain the rare complication of nail shedding. Onychomadesis after HFMD

Collaboration


Dive into the Fernando González-Candelas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iñaki Comas

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge