Fernando H. Bartoloni
Universidade Federal do ABC
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando H. Bartoloni.
Journal of Organic Chemistry | 2009
Luiz Francisco Monteiro Leite Ciscato; Fernando H. Bartoloni; Erick L. Bastos; Wilhelm J. Baader
A high-energy intermediate in the peroxyoxalate reaction can be accumulated at room temperature under specific reaction conditions and in the absence of any reducing agent in up to micromolar concentrations. Bimolecular interaction of this intermediate, accumulated in the reaction of oxalyl chloride with hydrogen peroxide, with an activator (highly fluorescent aromatic hydrocarbons with low oxidation potential) added in delay shows unequivocally that this intermediate is responsible for chemiexcitation of the activator. Activation parameters for the unimolecular decomposition of this intermediate (DeltaH(double dagger) = 11.2 kcal mol(-1); DeltaS(double dagger) = -23.2 cal mol(-1) K(-1)) and for its bimolecular reaction with 9,10-diphenylanthracene (DeltaH(double dagger) = 4.2 kcal mol(-1); DeltaS(double dagger) = -26.9 cal mol(-1) K(-1)) show that this intermediate is much less stable than typical 1,2-dioxetanes and 1,2-dioxetanones and demonstrate its highly favored interaction with the activator. Therefore, it can be inferred that structural characterization of the high-energy intermediate in the presence of an activator must be highly improbable. The observed linear free-energy correlation between the catalytic rate constants and the oxidation potentials of several activators definitely confirms the occurrence of the chemically initiated electron-exchange luminescence (CIEEL) mechanism in the chemiexcitation step of the peroxyoxalate system.
Journal of Organic Chemistry | 2010
Luiz Francisco Monteiro Leite Ciscato; Fernando H. Bartoloni; Dieter Weiss; Rainer Beckert; Wilhelm J. Baader
The activation parameters for the thermal decomposition of 13 acridinium-substituted 1,2-dioxetanes, bearing an aromatic moiety, were determined and their chemiluminescence emission quantum yields estimated, utilizing in situ photosensitized 1,2-dioxetane generation and observation of its thermal decomposition kinetics, without isolation of these highly unstable cyclic peroxides. Decomposition rate constants show linear free-energy correlation for electron-withdrawing substituents, with a Hammett reaction constant of ρ = 1.3 ± 0.1, indicating the occurrence of an intramolecular electron transfer from the acridinium moiety to the 1,2-dioxetane ring, as postulated by the intramolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Emission quantum yield behavior can also be rationalized on the basis of the intramolecular CIEEL mechanism, additionally evidencing its occurrence in this transformation. Both relations constitute the first experimental evidence for the occurrence of the postulated intramolecular electron transfer in the catalyzed and induced decomposition of properly substituted 1,2-dioxetanes.
Journal of Organic Chemistry | 2012
Marcelo Almeida de Oliveira; Fernando H. Bartoloni; Felipe Alberto Augusto; Luiz Francisco Monteiro Leite Ciscato; Erick L. Bastos; Wilhelm J. Baader
The chemiluminescence of cyclic peroxides activated by oxidizable fluorescent dyes is an example of chemically initiated electron exchange luminescence (CIEEL), which has been used also to explain the efficient bioluminescence of fireflies. Diphenoyl peroxide and dimethyl-1,2-dioxetanone were used as model compounds for the development of this CIEEL mechanism. However, the chemiexcitation efficiency of diphenoyl peroxide was found to be much lower than originally described. In this work, we redetermine the chemiexcitation quantum efficiency of dimethyl-1,2-dioxetanone, a more adequate model for firefly bioluminescence, and found a singlet quantum yield (Φ(S)) of 0.1%, a value at least 2 orders of magnitude lower than previously reported. Furthermore, we synthesized two other 1,2-dioxetanone derivatives and confirm the low chemiexcitation efficiency (Φ(S) < 0.1%) of the intermolecular CIEEL-activated decomposition of this class of cyclic peroxides. These results are compared with other chemiluminescent reactions, supporting the general trend that intermolecular CIEEL systems are much less efficient in generating singlet excited states than analogous intramolecular processes (Φ(S) ≈ 50%), with the notable exception of the peroxyoxalate reaction (Φ(S) ≈ 60%).
Monatshefte Fur Chemie | 2013
Fernando H. Bartoloni; Letícia Christina Pires Gonçalves; Ana Clara B. Rodrigues; Felipe Augusto Dörr; Ernani Pinto; Erick L. Bastos
Betalains are natural antioxidant pigments responsible for the visible fluorescence of flowers. Although these compounds are almost exclusively soluble in water, they are very sensitive to both hydrolysis and water-catalyzed isomerization. We show that three representative betalains are soluble in 2,2,2-trifluoroethanol (TFE) and that the hydrolytic stability of these model compounds in hydroalcoholic solutions increases with increasing amount of TFE. Furthermore, TFE increases the fluorescence quantum yields of betaxanthins.Graphical abstract.
Journal of Organic Chemistry | 2015
Fernando H. Bartoloni; Marcelo Almeida de Oliveira; Luiz Francisco Monteiro Leite Ciscato; Felipe Alberto Augusto; Erick L. Bastos; Wilhelm J. Baader
The chemiluminescent decomposition of 1,2-dioxetanones (α-peroxylactones), catalyzed by an appropriate fluorescent activator, is an important simple model for efficient bioluminescent transformations. In this work, we report experimental data on the catalyzed decomposition of two spiro-substituted 1,2-dioxetanone derivatives, which support the occurrence of an intermolecular electron transfer from the activator to the peroxide. The low efficiency of the studied systems is associated with steric hindrance during the chemiexcitation sequence, rationalized using the concept of supermolecule formation between the peroxide and the catalyst. This approach explains the difference in the chemiexcitation efficiencies in the decomposition of four-membered cyclic peroxide derivatives: 1,2-dioxetanes, 1,2-dioxetanones, and 1,2-dioxetanedione (the intermediate in the peroxyoxalate reaction), which are the most important model compounds for excited-state formation in chemiluminescence and bioluminescence processes.
Química Nova | 2011
Fernando H. Bartoloni; Luiz Francisco Monteiro Leite Ciscato; Mônica Melchioretto de Medeiros Peixoto; Ana Paula Santos; Cerize da Silva Santos; Sandro de Oliveira; Felipe Alberto Augusto; Ana Paula Eskildsen Pagano; Wilhelm J. Baader; Erick L. Bastos
The production of visible light by chemical reactions constitutes interesting and fascinating phenomena and several reaction mechanisms are discussed to rationalize excited state formation. Most efficient chemiluminescence reactions are thought to involve one or more electron transfer steps and chemiexcitation is believed to occur by radical annihilation. A brief introduction to the general principles of light production and the main known chemiexcitation mechanisms will be given here. Subsequently, recent results on the mechanistic elucidation of efficient chemiluminescence systems, as the peroxyoxalate reaction, the induced decomposition of phenoxy-substituted 1,2-dioxetanes and the catalyzed decomposition of new a-peroxylactones will be discussed.
New Journal of Chemistry | 2011
Luiz Francisco Monteiro Leite Ciscato; Dieter Weiss; Rainer Beckert; Erick L. Bastos; Fernando H. Bartoloni; Wilhelm J. Baader
The conversion of red excitation light into blue emission light (uphill energy conversion) using unstable 1,2-dioxetanes is described. The method is based on 1,2-dioxetane formation by red-light sensitized photooxygenation of adequate alkenes and subsequent blue-light emission due to thermal 1,2-dioxetane cleavage. The energy gain resulting from the chemical energy obtained in the transformation of an alkene into two carbonyl compounds transforms a red-light excitation laser beam into a blue-light chemiluminescence emission, producing thereby a formal anti-Stokes shift of 200–250 nm, opening up a whole spectrum of possible applications.
Journal of the Brazilian Chemical Society | 2012
Fernando H. Bartoloni; Marcelo Almeida de Oliveira; Felipe Alberto Augusto; Luiz Francisco Monteiro Leite Ciscato; Erick L. Bastos; Wilhelm J. Baader
Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, α-peroxylactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time.
Journal of Photochemistry and Photobiology B-biology | 2011
Ruy Carvalho Mattosinho Castro Ferraz; Carla Raquel Fontana; Ana P. de Ribeiro; Flávia Zardo Trindade; Fernando H. Bartoloni; Josef W. Baader; Emery C. Lins; Vanderlei Salvador Bagnato; Cristina Kurachi
The photodynamic therapy (PDT) is a combination of using a photosensitizer agent, light and oxygen that can cause oxidative cellular damage. This technique is applied in several cases, including for microbial control. The most extensively studied light sources for this purpose are lasers and LED-based systems. Few studies treat alternative light sources based PDT. Sources which present flexibility, portability and economic advantages are of great interest. In this study, we evaluated the in vitro feasibility for the use of chemiluminescence as a PDT light source to induce Staphylococcus aureus reduction. The Photogem® concentration varied from 0 to 75 μg/ml and the illumination time varied from 60 min to 240 min.The long exposure time was necessary due to the low irradiance achieved with chemiluminescence reaction at μW/cm² level. The results demonstrated an effective microbial reduction of around 98% for the highest photosensitizer concentration and light dose. These data suggest the potential use of chemiluminescence as a light source for PDT microbial control, with advantages in terms of flexibility, when compared with conventional sources.
Journal of the Brazilian Chemical Society | 2010
Luiz Francisco Monteiro Leite Ciscato; Erick L. Bastos; Fernando H. Bartoloni; Wolfgang Günther; Dieter Weiss; Rainer Beckert; Wilhelm J. Baader
The synthesis of one fenchyl-substituted alkene and two enol-ethers, containing 3-oxyphenyl substituents by the Barton-Kellogg reaction is described. The tri-substituted aromatic fenchyl-alkene 1a was prepared in 53% yield from thiofenchone and a diazoanisole; whereas enol-ethers 1b and 1c were obtained (95 and 75% yield, respectively) using an inverse approach based on diazofenchone and aromatic thionoesters. A mixture of Z and E isomers was obtained in all cases; isomer attribution and quantification has been carried out by analysis of NMR spectroscopic data assisted by theoretical calculations (E/Z ratio: 1a = 0.72, 1b = 2.2, 1c = 1.8). Reaction proceeds with low stereoselectivity leading to the preferential formation of diastereoisomeric olefins and enol-ethers where the aromatic substituent resides at the side of the two fenchyl methyl groups.