Fernando Larcher
Charles III University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando Larcher.
Oncogene | 1998
Fernando Larcher; Rodolfo Murillas; Marcela F.Bolontrade; Claudio J. Conti; José L. Jorcano
Upregulation of keratinocyte-derived VEGF-A expression has recently been established in non-neoplastic processes of skin such as wound healing, blistering diseases and psoriasis, as well as in skin neoplasia. To further characterize the effects of VEGF-A in skin in vivo, we have developed transgenic mice expressing the mouse VEGF120 under the control of a 2.4 kb 5′ fragment of keratin K6 gene regulatory sequences that confers transgene inducibility upon hyperproliferative stimuli. As expected from the inducible nature of the transgene, two of the three founder mice obtained (V27 and V208), showed no apparent phenotype. However, one founder (V2), mosaic for transgene integration, developed scattered red spots throughout the skin at birth. The transgenic offspring derived from this founder developed a striking phenotype characterized by swelling and erythema, resulting in early postnatal lethality. Histological examination of the skin of these transgenics demonstrated highly increased vascularization and edema leading to disruption of skin architecture. Expression of the transgene was silent in adult animals of lines derived from founders V27 and V208. Phorbol ester-induced hyperplasia resulted in transgene induction and increased cutaneous vascularization in adult transgenic mice of these lines. Skin carcinogenesis experiments performed on hemizygous crosses of V208 mice with activated H-ras-carrying transgenic mice (TG.AC) resulted in accelerated papilloma development and increased tumor burden. Previous results from our laboratory showed that VEGF upregulation is a major angiogenic stimulus in mouse epidermal carcinogenesis. By overexpressing VEGF in the skin of transgenic mice we now move a step further toward showing that VEGF-mediated angiogenesis is a rate-limiting step in the genesis of premalignant lesions, such as mouse skin papilloma. Our transgenic mice constitute an interesting model system for in vivo study of the cutaneous angiogenic process and its relevance in tumorigenesis and other skin diseases.
Oncogene | 2002
Carmen Segrelles; Sergio Ruiz; Paloma Pérez; Cristina Murga; Mirentxu Santos; Irina Budunova; Jesús I. Martínez; Fernando Larcher; Thomas J. Slaga; J. Silvio Gutkind; José L. Jorcano; Jesús M. Paramio
The mouse skin carcinogenesis protocol is a unique model for understanding the molecular events leading to oncogenic transformation. Mutations in the Ha-ras gene, and the presence of functional cyclin D1 and the EGF receptor, have proven to be important in this system. However, the signal transduction pathways connecting these elements during mouse skin carcinogenesis are poorly understood. This paper studies the relevance of the Akt and ERK pathways in the different stages of chemically induced mouse skin tumors. Akt activity increases throughout the entire process, and its early activation is detected prior to increased cyclin D1 expression. ERK activity rises only during the later stages of malignant conversion. The observed early increase in Akt activity appears to be due to raised PI-3K activity. Other factors acting on Akt such as ILK activation and decreased PTEN phosphatase activity appear to be involved at the conversion stage. To further confirm the involvement of Akt in this process, PB keratinocytes were transfected with Akt and subsequently injected into nude mice. The expression of Akt accelerates tumorigenesis and contributes to increased malignancy of these keratinocytes as demonstrated by the rate of appearance, the growth and the histological characteristics of the tumors. Collectively, these data provide evidence that Akt activation is one of the key elements during the different steps of mouse skin tumorigenesis.
Transplantation | 2004
Sara Llames; Marcela Del Rio; Fernando Larcher; Eva García; Marta García; M.J. Escámez; José L. Jorcano; Purificación Holguín; Alvaro Meana
Background. Keratinocyte cultures have been used for the treatment of severe burn patients. Here, we describe a new cultured bioengineered skin based on (1) keratinocytes and fibroblasts obtained from a single skin biopsy and (2) a dermal matrix based on human plasma. A high expansion capacity achieved by keratinocytes grown on this plasma-based matrix is reported. In addition, the results of successful preclinical and clinical tests are presented. Methods. Keratinocytes and fibroblasts were obtained by a double enzymatic digestion (trypsin and collagenase, respectively). In this setting, human fibroblasts are embedded in a clotted plasma-based matrix that serves as a three-dimensional scaffold. Human keratinocytes are seeded on the plasma-based scaffold to form the epidermal component of the skin construct. Regeneration performance of the plasma-based bioengineered skin was tested on immunodeficient mice as a preclinical approach. Finally, this skin equivalent was grafted on two severely burned patients. Results. Keratinocytes seeded on the plasma-based scaffold grew to confluence, allowing a 1,000-fold cultured-area expansion after 24 to 26 days of culture. Experimental transplantation of human keratinocytes expanded on the engineered plasma scaffold yielded optimum epidermal architecture and phenotype, including the expression of structural intracellular proteins and basement-membrane components. In addition, we report here the successful engraftment and stable skin regeneration in two severely burned patients at 1 and 2 years follow-up. Conclusions. Our data demonstrate that this new dermal equivalent allows for (1) generation of large bioengineered skin surfaces, (2) restoration of both the epidermal and dermal skin compartments, and (3) functional epidermal stem-cell preservation.
Cancer Research | 2009
Olaia Martínez-Iglesias; Susana García-Silva; Stephan P Tenbaum; Javier Regadera; Fernando Larcher; Jesús M. Paramio; Bjorn Vennström; Ana Aranda
Loss of thyroid hormone receptors (TR) is a common feature in some tumors, although their role in tumor progression is currently unknown. We show here that expression of TRbeta1 in hepatocarcinoma and breast cancer cells reduces tumor growth, causes partial mesenchymal-to-epithelial cell transition, and has a striking inhibitory effect on invasiveness, extravasation, and metastasis formation in mice. In cultured cells, TRbeta1 abolishes anchorage-independent growth and migration, blocks responses to epidermal growth factor, insulin-like growth factor-I, and transforming growth factor beta, and regulates expression of genes that play a key role in tumorigenicity and metastatic growth. The receptor disrupts the mitogenic action of growth factors by suppressing activation of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling pathways that are crucial for cell proliferation and invasiveness. Furthermore, increased aggressiveness of skin tumors is found in genetically modified mice lacking TRs, further demonstrating the role of these receptors as inhibitors of tumor progression. These results define a novel role for the thyroid hormone receptor as a metastasis suppressor gene, providing a starting point for the development of novel therapeutic strategies for the treatment of human cancer.
Cancer Research | 2004
Marta García; Nuria Isabel Fernandez-Garcia; Verónica Rivas; Marta Carretero; M.J. Escámez; Alicia Gonzalez-Martin; Estela E. Medrano; Olga V. Volpert; José L. Jorcano; Benilde Jiménez; Fernando Larcher; Marcela Del Rio
Human melanoma mortality is associated with the growth of metastasis in selected organs including the lungs, liver, and brain. In this study, we examined the consequences of overexpression of pigment epithelium-derived factor (PEDF), a neurotrophic factor and potent angiogenesis inhibitor, on both melanoma primary tumor growth and metastasis development. PEDF overexpression by melanoma cells greatly inhibited subcutaneous tumor formation and completely prevented lung and liver metastasis in immunocompromised mice after tail vein injection of metastatic human melanoma cell lines. Whereas the effects of PEDF on primary tumor xenografts appear mostly associated with inhibition of the angiogenic tumor response, abrogation of melanoma metastasis appears to depend on direct PEDF effects on both migration and survival of melanoma cells. PEDF-mediated inhibition of melanoma metastases could thus have a major impact on existing therapies for melanoma.
Human Gene Therapy | 2002
Marcela Del Rio; Fernando Larcher; Fernando Serrano; Alvaro Meana; Marta Muñoz; Marta García; Evangelina Muñoz; Clara Martin; Antonio Bernad; José L. Jorcano
Although skin is perhaps the most accessible of all somatic tissues for therapeutic gene transfer, it is a challenging site when attempting gene delivery. In addition to the transience of gene expression, important obstacles to cutaneous gene therapy have included the inability to sustain gene expression in a large proportion of keratinocytes within a given skin compartment. In this study, we have developed a novel experimental strategy that allows long-term regeneration of entirely genetically engineered human skin on the backs of NOD/SCID mice. Primary human keratinocytes were infected with a retroviral vector encoding the enhanced green fluorescent protein (EGFP) produced by transient transfection of 293T cells. EGFP expression allowed cell-sorting selection of a polyclonal population of productively transduced keratinocytes that were assembled in a live fibroblast-containing fibrin dermal matrix and orthotopically grafted onto mice. Epifluorescent illumination of the transplanted zone allowed in vivo monitoring of the genetically modified graft. EGFP-positive human skin was present on mice for 22 weeks after grafting. In addition, frozen sections prepared from the grafts displayed consistently strong EGFP-based fluorescence in all epidermal strata at every time point examined. Persistence of transgene expression was further confirmed through EGFP protein immunodetection. Purified EGFP-positive keratinocytes grafted as part of the fibrin-based artificial skin were capable of generating multilayer human epidermis on mice, with well-developed granulosum and corneum strata, and clearly defined rete ridges. Finally, the large proportion of transduced keratinocytes in our grafts allowed us to study, for the first time, the long-term in vivo clonal reconstitution pattern of the regenerated skin. Analysis of the provirus insertion sites indicates that a discrete number of epidermal stem cell clones was responsible for the maintenance of human skin regenerated in NOD/SCID recipients.
Molecular Carcinogenesis | 2004
Lucia Laura Policastro; Beatriz L. Molinari; Fernando Larcher; Patricia Blanco; Osvaldo L. Podhajcer; Cristina Susana Costa; Paola Andrea Rojas; Hebe Alicia Duran
The aim of this study was to evaluate the endogenous alterations of the antioxidant enzymes in tumor cells and to specifically compensate the resulting changes in the levels of reactive oxygen species (ROS) to control the malignant growth. We determined and compared the activities of antioxidant enzymes and the levels of superoxide anion (
The FASEB Journal | 2001
Fernando Larcher; Marcela Del Rio; Fernando Serrano; José C. Segovia; Angel Ramírez; Alvaro Meana; Angustias Page; José Luis Abad; Manuel A. González; Juan A. Bueren; Antonio Bernad; José L. Jorcano
{\rm O}_{\rm 2}^{ \cdot - }
Molecular Therapy | 2008
Francesca Di Nunzio; Giulietta Maruggi; Stefano Ferrari; Enzo Di Iorio; Valentina Poletti; Marta García; Marcela Del Rio; Michele De Luca; Fernando Larcher; Graziella Pellegrini; Fulvio Mavilio
) and hydrogen peroxide (H2O2) in tumor cell lines with different degrees of malignancy, paired with regard to their origin (PB/CH72T4, PDV/PDVC57, and HBL‐100/MCF‐7). An increase in superoxide dismutase activity and a decrease in the activities of H2O2‐detoxifying enzymes, as a function of malignancy, coupled with a rise in H2O2 and a decrease in
Journal of Investigative Dermatology | 2008
M.J. Escámez; Marta Carretero; Marta García; Lucía Martínez-Santamaría; I. Mirones; Blanca Duarte; Almudena Holguín; Eva García; Verónica García; Alvaro Meana; José L. Jorcano; Fernando Larcher; Marcela Del Rio
{\rm O}_{\rm 2}^{ \cdot - }