Fernando O. Zuloaga
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando O. Zuloaga.
American Journal of Botany | 2001
Liliana M. Giussani; J. Hugo Cota-Sánchez; Fernando O. Zuloaga; Elizabeth A. Kellogg
DNA sequence data from the chloroplast gene ndhF were analyzed to estimate the phylogeny of the subfamily Panicoideae, with emphasis on the tribe Paniceae. Our data suggest that the subfamily is divided into three strongly supported clades, corresponding to groups with largely identical base chromosome numbers. Relationships among the three clades are unclear. In unweighted parsimony analyses, the two major clades with x = 10 (Andropogoneae and x = 10 Paniceae) are weakly supported as sister taxa. The third large clade corresponds to x = 9 Paniceae. In analyses under implied weight, the two clades of Paniceae are sisters, making the tribe monophyletic. Neither resolution is strongly supported.Our molecular phylogenies are not congruent with previous classifications of tribes or subtribes. Based on this sample of species, we infer that C(4) photosynthesis has evolved independently several times, although a single origin with multiple reversals and several reacquisitions is only slightly less parsimonious. The phosphoenol pyruvate carboxykinase (PCK) subtype of C(4) photosynthesis has evolved only once, as has the NAD-malic enzyme (ME) subtype; all other origins are NADP-ME. Inflorescence bristles are apparently homologous in the genera Setaria and Pennisetum, contrary to opinions of most previous authors. Some genera, such as Digitaria, Echinochloa, and Homolepis are supported as monophyletic. The large genus Paspalum is shown to be paraphyletic, with Thrasya derived from within it. As expected, Panicum is polyphyletic, with lineages derived from multiple ancestors across the tree. Panicum subg. Panicum is monophyletic. Panicum subg. Dichanthelium, subg. Agrostoides, and subg. Phanopyrum are unrelated to each other, and none is monophyletic. Only Panicum subg. Dichanthelium sect. Dichanthelium, represented by P. sabulorum and P. koolauense, is monophyletic. Panicum subg. Megathyrsus, a monotypic subgenus including only the species P. maximum, is better placed in Urochloa, as suggested by other authors.
American Journal of Botany | 2003
Sandra S. Aliscioni; Liliana M. Giussani; Fernando O. Zuloaga; Elizabeth A. Kellogg
Panicum L. is a cosmopolitan genus with approximately 450 species. Although the genus has been considerably reduced in species number with the segregation of many taxa to independent genera in the last two centuries, Panicum remains a heterogeneous assemblage, as has been demonstrated in recent years. The genus is remarkably uniform in its floral characters but exhibits considerable variation in anatomical, physiological, and cytological features. As a result, several classifications, and criteria of what the genus should really include, have been postulated in modern literature. The purpose of this research, based on molecular data of the chloroplast ndhF gene, is to test the monophyly of Panicum, to evaluate infrageneric classifications, and to propose a robust phylogenetic hypothesis. Based on the present results, previous morphological and molecular phylogenetic studies, and inferred diagnostic morphological characters, we restrict Panicum sensu stricto (s.s.) to the former subgenus Panicum and support recognition of Dichanthelium, Phanopyrum, and Steinchisma as distinct genera. We have transfered other species of Panicum to other genera of the Paniceae. Most of the necessary combinations have been made previously, so few nomenclatural changes have been required. The remaining species of Panicum sensu lato (s.l.) are included within Panicum incertae sedis representing isolated species or species grouped within monophyletic clades. Additionally, we explore the performance of the three codon position characters in producing the supported phylogeny.
Journal of Systematics and Evolution | 2015
Robert John Soreng; Paul M. Peterson; Konstantin Romaschenko; Gerrit Davidse; Fernando O. Zuloaga; Emmet J. Judziewicz; Tarciso S. Filgueiras; Jerrold I. Davis; Osvaldo Morrone
Based on recent molecular and morphological studies we present a modern worldwide phylogenetic classification of the ± 12074 grasses and place the 771 grass genera into 12 subfamilies (Anomochlooideae, Aristidoideae, Arundinoideae, Bambusoideae, Chloridoideae, Danthonioideae, Micraioideae, Oryzoideae, Panicoideae, Pharoideae, Puelioideae, and Pooideae), 6 supertribes (Andropogonodae, Arundinarodae, Bambusodae, Panicodae, Poodae, Triticodae), 51 tribes (Ampelodesmeae, Andropogoneae, Anomochloeae, Aristideae, Arundinarieae, Arundineae, Arundinelleae, Atractocarpeae, Bambuseae, Brachyelytreae, Brachypodieae, Bromeae, Brylkinieae, Centotheceae, Centropodieae, Chasmanthieae, Cynodonteae, Cyperochloeae, Danthonieae, Diarrheneae, Ehrharteae, Eragrostideae, Eriachneae, Guaduellieae, Gynerieae, Hubbardieae, Isachneae, Littledaleeae, Lygeeae, Meliceae, Micraireae, Molinieae, Nardeae, Olyreae, Oryzeae, Paniceae, Paspaleae, Phaenospermateae, Phareae, Phyllorachideae, Poeae, Steyermarkochloeae, Stipeae, Streptochaeteae, Streptogyneae, Thysanolaeneae, Triraphideae, Tristachyideae, Triticeae, Zeugiteae, and Zoysieae), and 80 subtribes (Aeluropodinae, Agrostidinae, Airinae, Ammochloinae, Andropogoninae, Anthephorinae, Anthistiriinae, Anthoxanthinae, Arthraxoninae, Arthropogoninae, Arthrostylidiinae, Arundinariinae, Aveninae, Bambusinae, Boivinellinae, Boutelouinae, Brizinae, Buergersiochloinae, Calothecinae, Cenchrinae, Chionachninae, Chusqueinae, Coicinae, Coleanthinae, Cotteinae, Cteniinae, Cynosurinae, Dactylidinae, Dichantheliinae, Dimeriinae, Duthieinae, Eleusininae, Eragrostidinae, Farragininae, Germainiinae, Gouiniinae, Guaduinae, Gymnopogoninae, Hickeliinae, Hilariinae, Holcinae, Hordeinae, Ischaeminae, Loliinae, Melinidinae, Melocanninae, Miliinae, Monanthochloinae, Muhlenbergiinae, Neurachninae, Olyrinae, Orcuttiinae, Oryzinae, Otachyriinae, Panicinae, Pappophorinae, Parapholiinae, Parianinae, Paspalinae, Perotidinae, Phalaridinae, Poinae, Racemobambosinae, Rottboelliinae, Saccharinae, Scleropogoninae, Scolochloinae, Sesleriinae, Sorghinae, Sporobolinae, Torreyochloinae, Traginae, Trichoneurinae, Triodiinae, Tripogoninae, Tripsacinae, Triticinae, Unioliinae, Zizaniinae, and Zoysiinae). In addition, we include a radial tree illustrating the hierarchical relationships among the subtribes, tribes, and subfamilies. We use the subfamilial name, Oryzoideae, over Ehrhartoideae because the latter was initially published as a misplaced rank, and we circumscribe Molinieae to include 13 Arundinoideae genera. The subtribe Calothecinae is newly described and the tribe Littledaleeae is new at that rank.
Cladistics | 2012
Osvaldo Morrone; Lone Aagesen; María Amalia Scataglini; Diego L. Salariato; Silvia S. Denham; María Amelia Chemisquy; Silvana M. Sede; Liliana M. Giussani; Elizabeth A. Kellogg; Fernando O. Zuloaga
Included in the PACMAD clade of the family Poaceae (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, Danthonioideae), the tribe Paniceae s.l. is one of the largest tribes of the subfamily Panicoideae, with more than 2000 species. This tribe comprises a huge morphological, cytological and physiological diversity represented by different inflorescence types, several basic chromosome numbers, and at least four major photosynthetic pathways. The tribe Paniceae has been the subject of molecular studies that have confirmed its paraphyly: two major clades were recognized based on their basic chromosome numbers (x = 9, x = 10). The x = 10 Paniceae clade is sister to the Andropogoneae–Arundinelleae s.s. clade (x = 10), while the combined x = 10 clade is sister to the x = 9 clade that contains the remaining genera of Paniceae. As a result of a recent realignment within the tribe in terms of the phylogenetic position of minor and major Paniceae genera, a reanalysis of the whole sampling is performed and new underrepresented taxa are discussed. A total of 155 genera, currently considered within subfamily Panicoideae, are represented here by almost all genera of Paniceae s.l., representatives of Andropogoneae and Arundinelleae s.s., and the endemic and small tribe Steyermarkochloeae; we also included specimens of subfamily Micrairoideae, tribes Isachneae and Eriachneae. The sampling includes as outgroups 18 genera of the PACMAD clade (excluding Panicoideae) and four genera from the BEP clade (Bambusoideae, Ehrhartoideae, Pooideae), rooting with Bromus inermis. A matrix with 265 taxa based on the combined evidence from ndhF plastid sequences (2074 bp) and 57 morphological characters was subjected to parsimony analyses. Jackknife resampling was used to calculate group support. Most clades are characterized by morphological, cytological, anatomical, and/or physiological characters. Major tribal changes are based on the basic chromosome number; the pantropical x = 9 clade is here recognized as Paniceae s.s., while the American x = 10 Paniceae s.l. is restricted to the reinstated tribe Paspaleae. The optimization of the photosynthetic pathway for the Paspaleae–Andropogoneae–Arundinelleae s.s. clade, including the monotypic Reynaudia, shows a plesiomorphic C4 state while the ancestral state for Paniceae s.s. is ambiguous. If Reynaudia were not included or placed elsewhere, the ancestral photosynthetic pathway for both the Paspaleae–Andropogoneae–Arundinelleae s.s. clade and the Paniceae s.s. would be unambiguously C3. In order to explore character evolution further, the morphological characters were mapped onto one of the most parsimonious trees. A relationship between photosynthetic pathways and inflorescence morphology is suggested here for the first time. Based on the optimization of morphological characters and additional data, we propose names for almost all inner clades at the rank of subtribe with a few groups as incertae sedis. With this extensive sampling, we resolved the phylogenetic relationships and the assignation of synapomorphies, and improved the support in subtribe sorting; consequently a robust circumscription of the tribe Paniceae s.l. is proposed.
Cladistics | 2012
Claudia Szumik; Lone Aagesen; Dolores Casagranda; Vanesa Arzamendia; Diego Baldo; Lucía E. Claps; Fabiana Cuezzo; Juan Manuel Díaz Gómez; Adrián S. Di Giacomo; Alejandro R. Giraudo; Pablo A. Goloboff; Cecilia Gramajo; Cecilia Kopuchian; Sonia Kretzschmar; Mercedes Lizarralde; Alejandra Molina; Marcos Mollerach; Fernando Navarro; Soledad Nomdedeu; Adela Panizza; Veronica Pereyra; María Sandoval; Gustavo Scrocchi; Fernando O. Zuloaga
The idea of an area of endemism implies that different groups of plants and animals should have largely coincident distributions. This paper analyses an area of 1152 000 km2, between parallels 21 and 32°S and meridians 70 and 53°W to examine whether a large and taxonomically diverse data set actually displays areas supported by different groups. The data set includes the distribution of 805 species of plants (45 families), mammals (25 families), reptiles (six families), amphibians (five families), birds (18 families), and insects (30 families), and is analysed with the optimality criterion (based on the notion of endemism) implemented in the program NDM/VNDM. Almost 50% of the areas obtained are supported by three or more major groups; areas supported by fewer major groups generally contain species from different genera, families, or orders.
Annals of the Missouri Botanical Garden | 2002
Silvia S. Denham; Fernando O. Zuloaga; Osvaldo Morrone
Twenty-five species are treated in this work, in which exomorphological characters are analyzed cladistically. Species of Paspalum subg. Ceresia are characterized by their rigid, filiform to lanceolate blades, inflorescences with one to several racemes, rachis of the racemes winged and hyaline to membranous, spikelets pilose, occasionally glabrous, with the upper anthecium pale, hyaline to membranous, occasionally chartaceous, and the upper lemma not enclosing the tip of the upper palea. Species grow in South America from Mexico to Argentina and Uruguay. A cladistic analysis of subgenus Ceresia was conducted to test its monophyly, and to establish its relationship with other groups of Paspalum. A key to the species in subgenus Ceresia is given, as well as morphological description and illustration, and distribution maps.
Cladistics | 2009
Lone Aagesen; Claudia Szumik; Fernando O. Zuloaga; Osvaldo Morrone
The distribution data of 340 grass species sampled in a region of 53.219 km2 in the northwestern corner of Argentina (between ∼21°S and ∼24°S) were analyzed to search for concordance in species distributions by using the program NDM/VNDM. Here, the traditional biogeographic hypothesis proposed for the region is evaluated for the first time by using a quantitative method and an optimal criterion specifically developed within the context of areas of endemism. Three different grid sizes (0.5° × 0.5°, 0.35° × 0.35 ° and 0.2° × 0.2°) were used to analyze three nested data sets: species found in the Andes of Argentina, Bolivia and/or Chile; Andean distributed species; and all grass species found in the study region. The main areas supported by the analyses correspond generally to the traditional biogeographic hypothesis proposed for the region. Local distribution patterns defined by species restricted to the study region were best supported under the small grid sizes, while the bigger grid sizes recovered areas defined by species with a broader distribution. The local distribution patterns emerged in all the analyses even when widespread species were added to the data set.
Systematic Botany | 2008
Osvaldo Morrone; Silvia S. Denham; Sandra S. Aliscioni; Fernando O. Zuloaga
Abstract Taxonomic features of species of Panicum, previously classified in section Cordovensia, subgenus Dichanthelium, of Panicum, are reviewed and compared with those of other taxa in the Paniceae. The new genus Parodiophyllochloa is proposed on the basis of ecological and morphological features (i.e. plants growing at the edge of forests, with membranous ligules, lower glume more than 1/2 the spikelet length, lower palea and lower flower absent, and upper anthecium indurate with simple papillae all over its surface) and chloroplast ndhF sequences to include six species ranging from Mexico to Argentina. The new combinations: Parodiophyllochloa cordovensis, P. missiona, P. ovulifera, P. pantricha, P. penicillata, and P. rhizogona are proposed. The new genus is compared with other genera of the Paniceae.
International Journal of Plant Sciences | 2009
Elizabeth A. Kellogg; Sandra S. Aliscioni; Osvaldo Morrone; Jose Francisco Pensiero; Fernando O. Zuloaga
The genus Setaria is the largest genus in the so‐called bristle clade, a monophyletic group of panicoid grasses distinguished by the presence of sterile branches, or bristles, in their inflorescences. The clade includes both foxtail millet and pearl millet, the latter an important cereal crop in dry parts of the world. Other members of the clade are weeds that are widespread agricultural pests. Previous molecular phylogenetic studies have suggested that Setaria might not be monophyletic but did not have a large enough sample of species to test this rigorously. In addition, taxonomic studies have suggested a close relationship between Setaria and Paspalidium, with some authors combining them into a single genus, but molecular studies included too few Paspalidium accessions for a meaningful conclusion. Accordingly, we have produced 77 new sequences of the chloroplast gene ndhF for 52 species not in previous analyses. These were added to available sequences for 35 species in 10 genera of the bristle clade and four outgroup taxa. We find that Setaria species fall into several moderately to strongly supported clades that correlate with geography but not with the existing subgeneric classification. Relationships among these clades and among other genera within the bristle clade are unclear. Constraint experiments using the approximately unbiased test reject the monophyly of Pennisetum, Setaria, and Setaria plus Paspalidium, as well as several other groupings, although the test may be overly sensitive and prone to Type I error. The more conservative Shimodaira‐Hasegawa test fails to reject monophyly of any of the tested clades.
Systematic Botany | 2008
Silvana M. Sede; Osvaldo Morrone; Liliana M. Giussani; Fernando O. Zuloaga
Abstract The taxonomic status of Panicum section Lorea has remained as “incertae sedis” within Panicum. To resolve its position within the Paniceae and to test the monophyly of this section, phylogenetic analyses based on chloroplast sequence data (ndhF) and morphology were conducted for the Paniceae with particular emphasis on Panicum section Lorea. The results did not support the monophyly of this section. The species of this group were resolved in two clades which are not sister groups and neither of them is closely related to Panicum s.s. As a result, two new genera are proposed and described: Apochloa and Renvoizea, which are restricted to the Guiana highlands and eastern Brazil. New combinations are: Apochloa animara, A. bahiense, A. chnoodes, A. cipoense, A. eligulata, A. euprepes, A. jauana, A. lorea, A. lutzii, A. molinioides, A. poliophylla, A. sipapoense, A. steyermarkii, A. subtiramulosa, A. tijucae, Renvoizea acicularifolia, R. durifolia, R. glaziovii, R. lagostachya, R. marauense, R. restingae, R. sacciolepoides, R. teretifolia, R. trinii, and R. vaginiviscosa.