Fernando P. L. Marques
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando P. L. Marques.
Evolutionary Biology-new York | 2007
Marcelo R. de Carvalho; Flávio A. Bockmann; Dalton De Souza Amorim; Carlos Roberto F. Brandão; Mario de Vivo; José Lima de Figueiredo; Heraldo A. Britski; Mário C. C. de Pinna; Naércio A. Menezes; Fernando P. L. Marques; Nelson Papavero; Eliana M. Cancello; Jorge V. Crisci; John D. McEachran; Robert C. Schelly; John G. Lundberg; Anthony C. Gill; Ralf Britz; Quentin D. Wheeler; Melanie L. J. Stiassny; Lynne R. Parenti; Lawrence M. Page; Ward C. Wheeler; Julián Faivovich; Richard P. Vari; Lance Grande; Chris Humphries; Rob DeSalle; Malte C. Ebach; Gareth Nelson
Marcelo R. de Carvalho AE Flavio A. Bockmann AE Dalton S. Amorim AE Carlos Roberto F. Brandao AE Mario de Vivo AE Jose L. de Figueiredo AE Heraldo A. Britski AE Mario C. C. de Pinna AE Naercio A. Menezes AE Fernando P. L. Marques AE Nelson Papavero AE Eliana M. Cancello AE Jorge V. Crisci AE John D. McEachran AE Robert C. Schelly AE John G. Lundberg AE Anthony C. Gill AE Ralf Britz AE Quentin D. Wheeler AE Melanie L. J. Stiassny AE Lynne R. Parenti AE Larry M. Page AE Ward C. Wheeler AE Julian Faivovich AE Richard P. Vari AE Lance Grande AE Chris J. Humphries AE Rob DeSalle AE Malte C. Ebach AE Gareth J. Nelson
Cladistics | 2014
Ricardo Pinto-da-Rocha; Cibele Bragagnolo; Fernando P. L. Marques; Manuel Antunes Junior
Gonyleptidae is the second most diverse harvestmen family and the most studied in terms of morphology, behaviour, and ecology. Despite this, few phylogenetic studies have focused on gonyleptids, and those are based on a very limited number of taxa. We addressed this gap by constructing a phylogenetic hypothesis of the family using 101 taxa from all 16 gonyleptid subfamilies and four mitochondrial and nuclear loci (COI, 28S rRNA, 12S rRNA, and 16S rRNA). These were analysed under parsimony and likelihood optimality criteria (and using direct optimization for the former). Relationships among Gonyleptoidea and within each subfamily of Gonyleptidae were largely congruent between parsimony and maximum‐likelihood approaches. Taxonomic actions from our phylogeny include the following: Tricommatidae, new status, is restored as a family; Metasarcidae, new status, is recognized as a family and considered sister to the Cosmetidae; and Cranainae and Manaosbiinae are suggested as members of Gonyleptidae, restoring Roewers concept of the family. Within Gonyleptidae, the “K92” group—composed of Sodreaninae, Caelopyginae, Hernandariinae, Progonyleptoidellinae, and Gonyleptinae—forms a clade, although the latter two subfamilies are not monophyletic. The genus Parampheres is here transferred to Caelopyginae, and “Multumbo” dimorphicus to Gonyleptinae. Gonyleptidae is characterized by the presence of a ventral process on the penis glans and a bifid apophysis on the male coxa IV. The long‐legged Mitobatinae can be considered monophyletic only if some short‐legged pachylines are included, or if we assume that elongate legs arose twice independently (in the true mitobatine genera and in Longiperna). Pachylinae, the most diverse gonyleptid subfamily, represents several distinct lineages. We further conclude that the traditional use of a small set of morphological characters in the systematics of Gonyleptidae is unable to explain the complex evolution of the family.
Zoologica Scripta | 2013
Fernando Carbayo; Marta Álvarez-Presas; Cláudia T. Olivares; Fernando P. L. Marques; Eudóxia Maria Froehlich; Marta Riutort
Despite likely being the most diverse group within the Tricladida, the systematics of land planarians (Geoplanidae) has received minor attention. The most species‐rich ingroup, the subfamily Geoplaninae, is restricted to the Neotropics. The systematics of Geoplaninae remains uncertain. Unique features supporting the genera are scanty; moreover, parts of the known species have been poorly described, making comparative studies difficult. Likewise the evolutionary relationships among land planarians remain insufficiently understood. In the present study, a phylogenetic hypothesis for selected taxa of Geoplaninae based on the molecular data is presented and discussed in the light of morphological features. Our phylogenetic inference is based on the fragments of three nuclear regions (18S, 28S rDNA and EF‐1α) and a mitochondrial marker (cytochrome oxidase I) for which we considered three optimality criteria (parsimony, maximum likelihood and Bayesian inference). Although our data provide little support for most basal nodes, our phylogenetic trees show a number of well‐supported clades, unveiling morphologically homogeneous groups. According to these results, we propose to separate Geoplana into Barreirana (formerly considered a subgenus), Cratera gen. n., Imbira gen. n., Matuxia gen. n., Obama gen. n. and Paraba gen. n., emend the diagnoses of Barreirana, Geoplana, Notogynaphallia, Pasipha and Xerapoa and review the classification of the species within these genera. For Geoplana goetschi sensu Marcus, (1951), a new name is proposed.
Invertebrate Reproduction & Development | 2003
William Santana; Gerhard Pohle; Fernando P. L. Marques
Summary Mithrax hispidus (Herbst, 1790) is a mithracid majoid crab occurring on sand, corals and rocks in waters of the western Atlantic. Larval development consists of two zoeal stages and a megalopa. All larval stages are described in detail based on multiple cultures. Prior to this study, larvae of M. hispidus were considered to be different and grouped separately from most other larvae of Mithrax, primarily based on setation. A detailed morphological examination, based on the same specimens used for the first description, revealed that the inclusion of M. hispidus in a separate group is not valid as zoeae now fully agree with the morphological characteristics defined for the other group of five Mithrax species, including M. pleuracanthus, M. verrucosus, M. caribbaeus, M. coryphe, and M. forceps. This illustrates the importance of precisely recording morphological details such as setation, which may otherwise lead to incorrect interpretations with regard to perceived taxonomic affinities. A comparison of larvae of the Mithrax-Mithraculus species complex does not support separation into two genera. Larval evidence supports the recently suggested adult-based synonymization of M. caribbaeus with M. hispidus.
Journal of Parasitology | 2003
Fernando P. L. Marques; Daniel R. Brooks
Extensive new collections of specimens of Rhinebothroides spp. from a wide range of Neotropical freshwater potamotrygonid stingrays in numerous localities permitted critical evaluation of the validity of the 7 nominal species in the genus. Some qualitative characters previously used in the taxonomy of this group are highly variable within and among populations, and most morphometric and meristic characters thought to have taxonomic value for this group overlapped among several previously defined nominal species. Characters that were consistent throughout populations and that clearly define morphotypes supported recognition of 4 species: R. freitasi (syn. R. circularisi and R. venezuelensis), R. glandularis (syn. R. mclennanae), R. moralarai, and R. scorzai. We provide a taxonomic review of the genus, 8 additional host records, 7 new localities, and an identification key.
International Journal for Parasitology | 2013
Janine N. Caira; Fernando P. L. Marques; Kirsten Jensen; Roman Kuchta; Verónica A. Ivanov
The generic boundaries of the Diphyllidea are reassessed based on parsimony and likelihood phylogenetic analyses of 28S rDNA (ribonucleic acid large subunit), 18S rDNA (ribonucleic acid small subunit), and COI (cytochrome oxidase subunit I) sequence data for 31 species representing morphological variation across the order. Trees resulting from these analyses yielded a number of well-supported clades that are congruent with unique morphological features mandating generic revision of the order and erection of at least two new genera. Species originally assigned to Echinobothriumvan Beneden, 1849 but bearing a corona of spines on the region of the scolex anterior to the bothria and posterior to the apical organ armature are transferred to Coronocestus n. gen.; members of this genus typically parasitize triakid sharks, although one report from a hemiscylliid shark exists. Species with lateral hooklets arranged in continuous bands, rather than in two distinct clusters, are transferred to Halysioncum n. gen.; all species parasitize batoids, mostly myliobatids and rhinopterids, but a few records also exist from arhynchobatids, rhinobatids, platyrhinids and urotrygonids. Our analyses support transfer of the five species originally assigned to MacrobothridiumKhalil and Abdul-Salam, 1989 owing to their lack of cephalic peduncle spines to Echinobothrium. As a consequence, Echinobothrium sensu stricto includes species both with and without spines on the cephalic peduncle, but all members of the genus possess lateral hooklets arranged in clusters on either side of the dorsal and ventral apical hooks. With respect to diphyllideans parasitizing catsharks, AhamulinaMarques, Jensen and Caira, 2012 is unique in possessing apical hooks but lacking lateral hooklets and DitrachybothridiumRees, 1959 is unique in entirely lacking scolex armature. By far the majority of species of Echinobothrium sensu stricto parasitize skates of the family Rajidae, guitarfish of the family Rhinobatidae, and stingrays of the dasyatid genera Taeniura Müller and Henle, Dasyatis Rafinesque, and Himantura Müller and Henle, although a single species each has been reported from Anacanthobatidae, Rhynchobatidae, Platyrhinidae and Myliobatidae. It now seems clear that while by far the majority of diphyllideans parasitize batoids, the diphyllideans parasitizing sharks, and catsharks in particular, remain problematic. Additional collections from these carcharhiniform hosts are likely to be particularly illuminating.
PLOS ONE | 2011
Florian B. Reyda; Fernando P. L. Marques
Background Neotropical freshwater stingrays (Batoidea: Potamotrygonidae) host a diverse parasite fauna, including cestodes. Both cestodes and their stingray hosts are marine-derived, but the taxonomy of this host/parasite system is poorly understood. Methodology Morphological and molecular (Cytochrome oxidase I) data were used to investigate diversity in freshwater lineages of the cestode genus Rhinebothrium Linton, 1890. Results were based on a phylogenetic hypothesis for 74 COI sequences and morphological analysis of over 400 specimens. Cestodes studied were obtained from 888 individual potamotrygonids, representing 14 recognized and 18 potentially undescribed species from most river systems of South America. Results Morphological species boundaries were based mainly on microthrix characters observed with scanning electron microscopy, and were supported by COI data. Four species were recognized, including two redescribed (Rhinebothrium copianullum and R. paratrygoni), and two newly described (R. brooksi n. sp. and R. fulbrighti n. sp.). Rhinebothrium paranaensis Menoret & Ivanov, 2009 is considered a junior synonym of R. paratrygoni because the morphological features of the two species overlap substantially. The diagnosis of Rhinebothrium Linton, 1890 is emended to accommodate the presence of marginal longitudinal septa observed in R. copianullum and R. brooksi n. sp. Patterns of host specificity and distribution ranged from use of few host species in few river basins, to use of as many as eight host species in multiple river basins. Significance The level of intra-specific morphological variation observed in features such as total length and number of proglottids is unparalleled among other elasmobranch cestodes. This is attributed to the large representation of host and biogeographical samples. It is unclear whether the intra-specific morphological variation observed is unique to this freshwater system. Nonetheless, caution is urged when using morphological discontinuities to delimit elasmobranch cestode species because the amount of variation encountered is highly dependent on sample size and/or biogeographical representation.
Journal of Natural History | 2004
William Santana; Gerhard Pohle; Fernando P. L. Marques
Apiomithrax violaceus (A. Milne Edwards, 1868) is a pisid majoid crab occurring in tropical and subtropical coastal waters of the eastern and western South Atlantic. Larval development consists of two zoeal stages and a megalopa. Beginning with the first zoea, the duration of each larval stage at 24°C was 3–8 (5±1), 3–5 (4±0.5) and 9–15 (11±2) days, the megalopa and first crab instar appearing 9–11 (10±1) and 20–27 (23±2) days after hatching, respectively. Larval characters agree with those proposed for the Majoidea, in having nine or more setae on the scaphognathite in the first zoea and well-developed pleopods in the second zoea. However, larvae of A. violaceus do not fit larval pisid features. Zoeal stages differ from most other Pisidae in having lateral spines, a long rostral spine extending beyond the antenna, two spines per telson fork and a dorsolateral process on the third abdominal somite. The megalopa differs in having a spine dorsally on the carapace and on the basial segment of the second pereiopod. Two characters that are potentially unique to Apiomithrax include a zoeal antenna with an exopod that is much longer than the protopod, and a rostral spine that is longer than the dorsal spine. These characters should facilitate the identification of this taxon and could also be useful for phylogenetic studies. A review of larvae of 28 species among 14 genera indicated that there is no apparent single larval character that differentiates the Pisidae, with more limited phylogenetic analyses suggesting that this is a paraphyletic group. Apiomithrax, Eurynolambrus, Pisoides, Rochinia and Scyra have the most divergent morphological characters within the family. The analysis and inclusion of additional taxa is likely to shed more light on the sister-group relationships of the Pisidae. However, based on the extent of morphological interspecific variability of known larvae it is likely that the group, as presently defined by adult morphology, is not monophyletic.
Folia Parasitologica | 2015
Fernando P. L. Marques; Florian B. Reyda
Neotropical freshwater stingrays (Batoidea: Potamotrygonidae) host a diversity of parasites, including some, like their hosts, that are marine-derived. Among the parasites of potamotrygonids, the cestode fauna is the most diverse, with multiple genera having been reported, including genera endemic to the freshwaters of the Neotropics and genera that have cosmopolitan distributions. Recent efforts have been made to document the diversity of cestodes of this host-parasite system and to refine the taxonomy of parasite lineages. The present study contributes to our knowledge of Rhinebothrium Linton, 1890, a diverse cosmopolitan genus of rhinebothriidean cestode, with 37 species reported from marine batoids, one species from a freshwater stingray in Borneo and six species from potamotrygonids. Rhinebothrium jaimei sp. n. is described from two species of potamotrygonids, Potamotrygon orbignyi (Castelnau) (type host) and Potamotrygon scobina Garman, from Bahía de Marajó of the lower Amazon region. It can be distinguished from most of its marine congeners via multiple attributes, including its possession of two, rather than one, posteriormost loculi on its bothridia and the lomeniform shape of its bothridium that is wider anteriorly. In addition, R. jaimei sp. n. can be distinguished from the six Rhinebothrium species described previously from potamotrygonids based on a unique combination of morphological features. Despite extensive stingray cestode sampling efforts throughout all major Neotropical river systems, we found that unlike most species of potamotrygonid Rhinebothrium species, which are widespread, R. jaimei sp. n. is restricted to the Bahía de Marajó. The discovery of this new species of Rhinebothrium in Bahía de Marajó, an area in which potamotrygonids occur sympatrically with some species of euryhaline batoids (e.g. Dasyatis spp.) and share some trophic resources, suggest that modern ecological processes may be contributing to the distribution patterns of cestodes infecting potamotrygonids.
PLOS ONE | 2017
Bruna Trevisan; Juliana F. Primon; Fernando P. L. Marques; Ulrike G. Munderloh
Tapeworms of the genus Anindobothrium Marques, Brooks & Lasso, 2001 are found in both marine and Neotropical freshwater stingrays of the family Potamotrygonidae. The patterns of host association within the genus support the most recent hypothesis about the history of diversification of potamotrygonids, which suggests that the ancestor of freshwater lineages of the Potamotrygonidae colonized South American river systems through marine incursion events. Despite the relevance of the genus Anindobothrium to understand the history of colonization and diversification of potamotrygonids, no additional efforts were done to better investigate the phylogenetic relationship of this taxon with other lineages of cestodes since its erection. This study is a result of recent collecting efforts to sample members of the genus in marine and freshwater potamotrygonids that enabled the most extensive documentation of the fauna of Anindobothrium parasitizing species of Styracura de Carvalho, Loboda & da Silva, Potamotrygon schroederi Fernández-Yépez, P. orbignyi (Castelnau) and P. yepezi Castex & Castello from six different countries, representing the eastern Pacific Ocean, Caribbean Sea, and river basins in South America (Rio Negro, Orinoco, and Maracaibo). The newly collected material provided additional specimens for morphological studies and molecular samples for subsequent phylogenetic analyses that allowed us to address the phylogenetic position of Anindobothrium and provide molecular and morphological evidence to recognize two additional species for the genus. The taxonomic actions that followed our analyses included the proposition of a new family, Anindobothriidae fam. n., to accommodate the genus Anindobothrium in the order Rhinebothriidea Healy, Caira, Jensen, Webster & Littlewood, 2009 and the description of two new species—one from the eastern Pacific Ocean, A. carrioni sp. n., and the other from the Caribbean Sea, A. inexpectatum sp. n. In addition, we also present a redescription of the type species of the genus, A. anacolum (Brooks, 1977) Marques, Brooks & Lasso, 2001, and of A. lisae Marques, Brooks & Lasso, 2001. Finally, we discuss the paleogeographical events mostly linked with the diversification of the genus and the protocols adopted to uncover cryptic diversity in Anindobothrium.