Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando Peña-Ortega is active.

Publication


Featured researches published by Fernando Peña-Ortega.


Progress in Neurobiology | 2012

Functional impact of interneuronal inhibition in the cerebral cortex of behaving animals

Hugo Merchant; Victor de Lafuente; Fernando Peña-Ortega; Jorge Larriva-Sahd

This paper reviews recent progress in understanding the functional roles of inhibitory interneurons in behaving animals and how they affect information processing in cortical microcircuits. Multiple studies have shown that the morphological subtypes of inhibitory cells show distinct electrophysiological properties, as well as different molecular and neurochemical identities, providing a large mosaic of inhibitory mechanisms for the dynamic processing of information in the cortex. However, it is only recently that some specific functions of different interneuronal subtypes have been described in behaving animals. In this regard, influential results have been obtained using the known differences of interneurons and pyramidal cells recorded extracellularly to dissociate the functional roles that these two classes of neurons may play in the cortical microcircuits during various behaviors. Neurons can be segregated into fast-spiking (FS) cells that show short action potentials, high discharge rates, and correspond to putative interneurons; and regular-spiking (RS) cells that show larger action potentials and correspond to pyramidal neurons. Using this classification strategy, it has been found that cortical inhibition is involved in sculpting the tuning to different stimulus or behavioral features across a wide variety of sensory, association, and motor areas. Recent studies have suggested that the increase in high-frequency synchronization during information processing and spatial attention may be mediated by FS activation. Finally, FS are active during motor planning and movement execution in different motor areas, supporting the notion that inhibitory interneurons are involved in shaping the motor command but not in gating the cortical output.


Peptides | 2012

Somatostatin modulates generation of inspiratory rhythms and determines asphyxia survival

Josué O. Ramírez-Jarquín; Sergio Lara-Hernández; Juan Javier López-Guerrero; Miguel A. Aguileta; Ana Julia Rivera-Angulo; Alicia Sampieri; Luis Vaca; Benito Ordaz; Fernando Peña-Ortega

Breathing and the activity of its generator (the pre-Bötzinger complex; pre-BötC) are highly regulated functions. Among neuromodulators of breathing, somatostatin (SST) is unique: it is synthesized by a subset of glutamatergic pre-BötC neurons, but acts as an inhibitory neuromodulator. Moreover, SST regulates breathing both in normoxic and in hypoxic conditions. Although it has been implicated in the neuromodulation of breathing, neither the locus of SST modulation, nor the receptor subtypes involved have been identified. In this study, we aimed to fill in these blanks by characterizing the SST-induced regulation of inspiratory rhythm generation in vitro and in vivo. We found that both endogenous and exogenous SST depress all preBötC-generated rhythms. While SST abolishes sighs, it also decreases the frequency and increases the regularity of eupnea and gasping. Pharmacological experiments showed that SST modulates inspiratory rhythm generation by activating SST receptor type-2, whose mRNA is abundantly expressed in the pre-Bötzinger complex. In vivo, blockade of SST receptor type-2 reduces gasping amplitude and consequently, it precludes auto-resuscitation after asphyxia. Based on our findings, we suggest that SST functions as an inhibitory neuromodulator released by excitatory respiratory neurons when they become overactivated in order to stabilize breathing rhythmicity in normoxic and hypoxic conditions.


PLOS ONE | 2013

Amyloid Beta Inhibits Olfactory Bulb Activity and the Ability to Smell

Reynaldo Alvarado-Martínez; Karla Salgado-Puga; Fernando Peña-Ortega

Early olfactory dysfunction has been consistently reported in both Alzheimer’s disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.


International Journal of Peptides | 2012

Amyloid Beta Peptide Slows Down Sensory-Induced Hippocampal Oscillations

Fernando Peña-Ortega; Ramón Bernal-Pedraza

Alzheimers disease (AD) progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ) oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25–35) reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1–42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch) with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.


Glia | 2016

Microglia modulate respiratory rhythm generation and autoresuscitation.

Jonathan‐Julio Lorea‐Hernández; Teresa Morales; Ana‐Julia Rivera‐Angulo; David Alcantara‐Gonzalez; Fernando Peña-Ortega

Inflammation has been linked to the induction of apneas and Sudden Infant Death Syndrome, whereas proinflammatory mediators inhibit breathing when applied peripherally or directly into the CNS. Considering that peripheral inflammation can activate microglia in the CNS and that this cell type can directly release all proinflammatory mediators that modulate breathing, it is likely that microglia can modulate breathing generation. It might do so also in hypoxia, since microglia are sensitive to hypoxia, and peripheral proinflammatory conditions affect gasping generation and autoresuscitation. Here, we tested whether microglial activation or inhibition affected respiratory rhythm generation. By measuring breathing as well as the activity of the respiratory rhythm generator (the preBötzinger complex), we found that several microglial activators or inhibitors, applied intracisternally in vivo or in the recording bath in vitro, affect the generation of the respiratory rhythms both in normoxia and hypoxia. Furthermore, microglial activation with lipopolysaccharide affected the ability of the animals to autoresuscitate after hypoxic conditions, an effect that is blocked when lipopolysaccharide is co‐applied with the microglial inhibitor minocycline. Moreover, we found that the modulation of respiratory rhythm generation induced in vitro by microglial inhibitors was reproduced by microglial depletion. In conclusion, our data show that microglia can modulate respiratory rhythm generation and autoresuscitation. GLIA 2016;64:603–619


Current Alzheimer Research | 2012

Amyloid beta 1-42 inhibits entorhinal cortex activity in the beta-gamma range: role of GSK-3.

Fernando Peña-Ortega; Angeles Solis-Cisneros; Benito Ordaz; Hugo Balleza-Tapia; Juan Javier López-Guerrero

Oscillatory activity in the entorhinal cortex has been associated with several cognitive functions. Accordingly, Alzheimer Disease-associated cognitive decline has been related to amyloid beta-induced disturbances in several of these oscillatory patterns. We have previously shown that acute application of amyloid beta inhibits the generation of slow frequency oscillations (7-20 Hz). In contrast, alterations in faster oscillations recorded in Alzheimer Disease-transgenic mice that over-express amyloid beta have been controversial. Since transgenic mice may produce complex responses due to compensatory mechanisms, we tested the effect of acute application of amyloid beta on fast oscillations (beta-gamma bursts) generated by entorhinal cortex slices in vitro in a Mg2+ -ree solution. We also explored the participation of the enzyme glycogen synthase kinase 3 (GSK-3) in this effect. Our results show that bath application of a clinically relevant concentration of amyloid beta (10 nM) activates GSK-3 and reduces the power of beta-gamma bursts in the entorhinal cortex. The reduction of beta-gamma bursts by amyloid beta is blocked by inhibiting GSK-3 either with lithium or with SB 216763. Our results suggest that amyloid beta-induced inhibition of entorhinal cortex beta-gamma activity involves GSK-3 activation, which may provide a molecular mechanism for amyloid beta-induced neural network disruption and support the use of GSK-3 inhibitors to treat Alzheimer Disease.


Protein and Peptide Letters | 2015

Cellular and Network Mechanisms Underlying Memory Impairment Induced by Amyloid β Protein

Karla Salgado-Puga; Fernando Peña-Ortega

It has long been known that amyloid ß protein (Aß) plays a key role in Alzheimers Disease (AD) and in Down Syndrome cognitive decline. Recent findings have shown that soluble forms of Aß (mostly Aß oligomers; Aßo), rather than insoluble forms (fibrils and plaques), are associated with memory impairments in early stages of AD. Since synaptic plasticity and oscillatory network activity are required for memory formation, consolidation and retrieval, numerous attempts have been made to establish whether or not Aßo-induced alterations in synaptic plasticity and oscillatory network activity cause memory impairment. Despite a wealth of uncorrelated experimental evidence, such a relationship remains elusive. Furthermore, the specific cellular mechanisms underlying these disruptions remain to be determined. This review will discuss recent findings about the cellular and network mechanisms involved in Aßo-induced alterations of network oscillations and synaptic plasticity that could be responsible for the learning and memory impairments observed in early AD. Additionally, we will review some of the signal transduction pathways involved in these deleterious effects, which are revealing promising therapeutic targets to ease Aßo-induced brain dysfunction and treat AD.


Frontiers in Neuroscience | 2016

Electrophysiological Evidence for a Direct Link between the Main and Accessory Olfactory Bulbs in the Adult Rat

Víctor Vargas-Barroso; Benito Ordaz-Sánchez; Fernando Peña-Ortega; Jorge Larriva-Sahd

It is accepted that the main- and accessory- olfactory systems exhibit overlapping responses to pheromones and odorants. We performed whole-cell patch-clamp recordings in adult rat olfactory bulb slices to define a possible interaction between the first central relay of these systems: the accessory olfactory bulb (AOB) and the main olfactory bulb (MOB). This was tested by applying electrical field stimulation in the dorsal part of the MOB while recording large principal cells (LPCs) of the anterior AOB (aAOB). Additional recordings of LPCs were performed at either side of the plane of intersection between the aAOB and posterior-AOB (pAOB) halves, or linea alba, while applying field stimulation to the opposite half. A total of 92 recorded neurons were filled during whole-cell recordings with biocytin and studied at the light microscope. Neurons located in the aAOB (n = 6, 8%) send axon collaterals to the MOB since they were antidromically activated in the presence of glutamate receptor antagonists (APV and CNQX). Recorded LPCs evoked orthodromic excitatory post-synaptic responses (n = 6, aAOB; n = 1, pAOB) or antidromic action potentials (n = 8, aAOB; n = 7, pAOB) when applying field stimulation to the opposite half of the recording site (e.g., recording in aAOB; stimulating in pAOB, and vice-versa). Observation of the filled neurons revealed that indeed, LPCs send axon branches that cross the linea alba to resolve in the internal cellular layer. Additionally, LPCs of the aAOB send axon collaterals to dorsal-MOB territory. Notably, while performing AOB recordings we found a sub-population of neurons (24% of the total) that exhibited voltage-dependent bursts of action potentials. Our findings support the existence of: 1. a direct projection from aAOB LPCs to dorsal-MOB, 2. physiologically active synapses linking aAOB and pAOB, and 3. pacemaker-like neurons in both AOB halves. This work was presented in the form of an Abstract on SfN 2014 (719.14/EE17).


International Journal of Peptides | 2013

Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

Armando I. Gutiérrez-Lerma; Benito Ordaz; Fernando Peña-Ortega

Soluble amyloid beta peptide (Aβ) is responsible for the early cognitive dysfunction observed in Alzheimers disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ 25−35 and Aβ 1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM). We found that Aβ 25−35 reduces, with less potency than Aβ 1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ 25−35 but was reduced by Aβ 1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.


Journal of Clinical Neurophysiology | 2010

Neuronal Bursting Properties in Focal and Parafocal Regions in Pediatric Neocortical Epilepsy Stratified by Histology

Charles J. Marcuccilli; Andrew K. Tryba; Wim van Drongelen; Henner Koch; Jean Charles Viemari; Fernando Peña-Ortega; Erin L. Doren; Peter Pytel; Marc Chevalier; Ana Mrejeru; Michael Kohrman; Robert E. Lasky; Sean M. Lew; David M. Frim; Jan-Marino Ramirez

To test the hypothesis that focal and parafocal neocortical tissue from pediatric patients with intractable epilepsy exhibits cellular and synaptic differences, the authors characterized the propensity of these neurons to generate (a) voltage-dependent bursting and (b) synaptically driven paroxysmal depolarization shifts. Neocortical slices were prepared from tissue resected from patients with intractable epilepsy. Multiunit network activity and simultaneous whole-cell patch recordings were made from neurons from three patient groups: (1) those with normal histology; (2) those with mild and severe cortical dysplasia; and (3) those with abnormal pathology but without cortical dysplasia. Seizure-like activity was characterized by population bursting with concomitant bursting in intracellularly recorded cortical neurons (n = 59). The authors found significantly more N-methyl-d-aspartic acid-driven voltage-dependent bursting neurons in focal versus parafocal tissue in patients with severe cortical dysplasia (P < 0.01). Occurrence of paroxysmal depolarization shifts and burst amplitude and burst duration were significantly related to tissue type: focal or parafocal (P < 0.05). The authors show that functional differences between focal and parafocal tissue in patients with severe cortical dysplasia exist. There are functional differences between patient groups with different histology, and bursting properties can be significantly associated with the distinction between focal and parafocal tissue.

Collaboration


Dive into the Fernando Peña-Ortega's collaboration.

Top Co-Authors

Avatar

Benito Ordaz

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Karla Salgado-Puga

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Ana Julia Rivera-Angulo

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Ana‐Julia Rivera‐Angulo

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Jonathan Julio Lorea-Hernández

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Jorge Larriva-Sahd

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Ernesto Flores-Martínez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Jonathan‐Julio Lorea‐Hernández

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Neira Polet Camacho-Hernández

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge