Fernando Pestana da Costa
Instituto Superior Técnico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando Pestana da Costa.
Nodea-nonlinear Differential Equations and Applications | 1998
Fernando Pestana da Costa
Abstract. The asymptotic behaviour of solutions to the generalized Becker-Döring equations is studied. It is proved that solutions converge strongly to a unique equilibrium if the initial density is sufficiently small.
European Journal of Applied Mathematics | 2009
Fernando Pestana da Costa; Eugene C. Gartland; Michael Grinfeld; João Teixeira Pinto
Motivated by a recent investigation of Millar and McKay [Mol. Cryst. Liq. Cryst., 435, 277/[937]-286/[946] (2005)], we study the magnetic field twist-Fr´eedericksz transition for a nematic liquid crystal of positive diamagnetic anisotropy with strong anchoring and pre- twist boundary conditions. Despite the pre-twist, the system still possesses Z2 symmetry and a symmetry-breaking pitchfork bifurcation, which occurs at a critical magnetic-field strength that, as we prove, is above the threshold for the classical twist-Fr´eedericksz tran- sition (which has no pre-twist). It was observed numerically by Millar and McKay that this instability occurs precisely at the point at which the ground-state solution loses its monotonicity (with respect to the position coordinate across the cell gap). We explain this surprising observation using a rigorous phase-space analysis.
European Journal of Applied Mathematics | 2017
Fernando Pestana da Costa; Maria Isabel Méndez; João Teixeira Pinto
In the paper, Bifurcation analysis of the twist-Freedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions (2009 Eur. J. Appl. Math. 20 , 269–287) by da Costa et al. the twist-Freedericksz transition in a nematic liquid-crystal one-dimensional cell of lenght L was studied, imposing an antisymmetric net twist Dirichlet condition at the cell boundaries. In the present paper, we extend that study to the more general case of net twist Dirichlet conditions without any kind of symmetry restrictions. We use phase-plane analysis tools and appropriately defined time maps to obtain the bifurcation diagrams of the model when L is the bifurcation parameter, and related these diagrams with the one in the antisymmetric situation. The stability of the bifurcating solutions is investigated by applying the method of Maginu (1978 J. Math. Anal. Appl. 63 , 224–243).
Kinetic and Related Models | 2018
Fernando Pestana da Costa; João Teixeira Pinto; Rafael Sasportes
In this work we study the rate of convergence to similarity profiles in a mean field model for the deposition of a submonolayer of atoms in a crystal facet, when there is a critical minimal size
grid computing | 2017
Rodrigo Bruno; Fernando Pestana da Costa; Paulo Ferreira
n\geq 2
Siam Journal on Mathematical Analysis | 2016
Fernando Pestana da Costa; João Teixeira Pinto; Rafael Sasportes
for the stability of the formed clusters. The work complements recently published related results by the same authors in which the rate of convergence was studied outside of a critical direction
Macromolecules | 2006
Fernando B. Dias; Jorge Morgado; António L. Maçanita; Fernando Pestana da Costa; Hugh D. Burrows; Andrew P. Monkman
x=\tau
The Journal of Physical Chemistry | 1989
António L. Maçanita; Fernando Pestana da Costa; Sílvia M. B. Costa; Eurico Melo; Helena Santos
in the cluster size
Journal of Differential Equations | 2009
Fernando Pestana da Costa; Michael Grinfeld; Nigel J. Mottram; João Teixeira Pinto
x
Applied and Industrial Mathematics in Italy II, Selected Contributions from the 8th SIMAI Conference; Series on Advances in Mathematics for Applied Sciences, vol. 75 | 2007
Fernando Pestana da Costa; Rafael Sasportes; João Teixeira Pinto
vs. time