Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando Quiros-Pacheco is active.

Publication


Featured researches published by Fernando Quiros-Pacheco.


Proceedings of SPIE | 2011

Large Binocular Telescope Adaptive Optics System: new achievements and perspectives in adaptive optics

Simone Esposito; Armando Riccardi; Enrico Pinna; Alfio Puglisi; Fernando Quiros-Pacheco; Carmelo Arcidiacono; Marco Xompero; Runa Briguglio; Guido Agapito; Lorenzo Busoni; Luca Fini; Javier Argomedo; Alessandro Gherardi; Guido Brusa; Douglas L. Miller; Juan Carlos Guerra; Paolo Stefanini; Piero Salinari

The Large Binocular Telescope (LBT) is a unique telescope featuring two co-mounted optical trains with 8.4m primary mirrors. The telescope Adaptive Optics (AO) system uses two innovative key components, namely an adaptive secondary mirror with 672 actuators and a high-order pyramid wave-front sensor. During the on-sky commissioning such a system reached performances never achieved before on large ground-based optical telescopes. Images with 40mas resolution and Strehl Ratios higher than 80% have been acquired in H band (1.6 μm). Such images showed a contrast as high as 10-4. Based on these results, we compare the performances offered by a Natural Guide Star (NGS) system upgraded with the state-of-the-art technology and those delivered by existing Laser Guide Star (LGS) systems. The comparison, in terms of sky coverage and performances, suggests rethinking the current role ascribed to NGS and LGS in the next generation of AO systems for the 8-10 meter class telescopes and Extremely Large Telescopes (ELTs).


Proceedings of SPIE | 2010

The adaptive secondary mirror for the Large Binocular Telescope: optical acceptance test and preliminary on-sky commissioning results

Armando Riccardi; Marco Xompero; Runa Briguglio; Fernando Quiros-Pacheco; Lorenzo Busoni; Luca Fini; Alfio Puglisi; Simone Esposito; Carmelo Arcidiacono; Enrico Pinna; Piero Ranfagni; Piero Salinari; Guido Brusa; Richard A. Demers; Roberto Biasi; Daniele Gallieni

The Large Binocular Telescope (LBT) has two adaptive secondary mirrors based on 672 voice-coil force actuators. The shape of the mirror is controlled using internal metrology based on co-located capacitive sensors. The first mirror unit is currently mounted on LBT for on-sky commissioning as part of the First Light Adaptive Optics System (FLAO). During spring-time 2009 the optical acceptance test was performed using the 14-m optical test tower at the Osservatorio Astrofisico di Arcetri (INAF) showing the capability of flattening the shell at the level of 14nm rms residual surface error. This paper reports the optical layout, calibration procedures and results of the optical acceptance test. Moreover we report the first results obtained during the early runs of FLAO commissioning showing the ability of the mirror to compensate for atmospheric turbulence with extremely high Strehl ratio values (better than 80% in H-band) as permitted by the largest number of correcting degrees of freedom currently available on-sky for astronomical telescopes.


Proceedings of SPIE | 2012

The Giant Magellan Telescope adaptive optics program

Antonin H. Bouchez; D. Scott Acton; Guido Agapito; Carmelo Arcidiacono; Francis Bennet; Valdemaro Biliotti; Marco Bonaglia; Runa Briguglio; Guido Brusa-Zappellini; Lorenzo Busoni; Luca Carbonaro; Johanan L. Codona; Rodolphe Conan; Thomas Connors; Oliver Durney; Brady Espeland; Simone Esposito; Luca Fini; Rusty Gardhouse; Thomas Gauron; Michael Hart; Philip M. Hinz; Srikrishna Kanneganti; Edward J. Kibblewhite; Russell P. Knox; Brian A. McLeod; T. McMahon; M. Montoya; Timothy J. Norton; Mark P. Ordway

The Giant Magellan Telescope (GMT) adaptive optics (AO) system will be an integral part of the telescope, providing laser guidestar generation, wavefront sensing, and wavefront correction to every instrument currently planned on the 25.4 m diameter GMT. There will be three first generation AO observing modes: Natural Guidestar, Laser Tomography, and Ground Layer AO. All three will use a segmented adaptive secondary mirror to deliver a corrected beam directly to the instruments. The Natural Guidestar mode will provide extreme AO performance, with a total wavefront error less than 185 nm RMS using bright guidestars. The Laser Tomography mode uses 6 lasers and a single off-axis natural guidestar to deliver better than 290 nm RMS wavefront error at the science target, over 50% of the sky at the galactic pole. The Ground Layer mode uses 4 natural guidestars on the periphery of the science field to tomographically reconstruct and correct the ground layer AO turbulence, improving the image quality for wide-field instruments. A phasing system maintains the relative alignment of the primary and secondary segments using edge sensors and continuous feedback from an off-axis guidestar. We describe the AO system preliminary design, predicted performance, and the remaining technical challenges as we move towards the start of construction.


Proceedings of SPIE | 2012

Natural guide star adaptive optics systems at LBT: FLAO commissioning and science operations status

Simone Esposito; Armando Riccardi; Enrico Pinna; Alfio Puglisi; Fernando Quiros-Pacheco; Carmelo Arcidiacono; Marco Xompero; Runa Briguglio; Lorenzo Busoni; Luca Fini; Javier Argomedo; Alessandro Gherardi; Guido Agapito; Guido Brusa; Doug Miller; J. C. Guerra Ramon; Konstantina Boutsia; Paolo Stefanini

This paper summarizes the activities and the principal results achieved during the commissioning of the two Natural Guide Star (NGS) AO systems called FLAO#1 & 2 installed at the bent Gregorian focal stations of the 2x8.4m Large Binocular Telescope (LBT). The commissioning activities of FLAO#1 took place in the period February 2010 - October 2011, while FLAO#2 commissioning started in December 2011 and should be completed by November 2012. The main results of the commissioning campaign are presented in terms of the H-band Strehl Ratio values achieved under different observing conditions. We will also describe the automatic procedures to configure and set-up the FLAO systems, and in particular the modal gain optimization procedure, which has been proven to be a very important one in achieving the nominal performance. Finally, some of the results achieved in two science runs using the near infra-red camera PISCES are briefly highlighted.


Proceedings of SPIE | 2010

First light AO (FLAO) system for LBT: performance analysis and optimization

Fernando Quiros-Pacheco; Lorenzo Busoni; Guido Agapito; Simone Esposito; Enrico Pinna; Alfio Puglisi; Armando Riccardi

We will present in this paper the performance analysis and optimization of the First Light AO (FLAO) system of the Large Binocular Telescope (LBT). The system comprises an adaptive secondary mirror (ASM) with 672 actuators (LBT672a unit) and a pyramid wavefront sensor (PWFS) with adjustable sampling of the telescope pupil from 30×30 down to 4×4 subapertures. The performances have been estimated by means of end-to-end simulations, scanning a range of reference star magnitudes and looking for the optimal set of parameters maximizing the on-axis Strehl Ratio. Specific additional error sources have been accounted for and analyzed separately, such as mis-registration errors, mis-calibration issues, and the effect of telescope vibrations. Taking into account the considered error sources we defined the baseline and goal performances of the FLAO system. The acceptance test of the FLAO system took place in December 2009, demonstrating actual FLAO performances between baseline and goal estimates. The commissioning of the FLAO system to the LBT telescope is currently ongoing until December 2010.


Proceedings of SPIE | 2014

MagAO: Status and on-sky performance of the Magellan adaptive optics system

Katie M. Morzinski; Laird M. Close; Jared R. Males; Derek Kopon; Phil Hinz; Simone Esposito; Armando Riccardi; Alfio Puglisi; Enrico Pinna; Runa Briguglio; Marco Xompero; Fernando Quiros-Pacheco; Vanessa P. Bailey; Katherine B. Follette; Timothy J. Rodigas; Ya Lin Wu; Carmelo Arcidiacono; Javier Argomedo; Lorenzo Busoni; Tyson Hare; Alan Uomoto; Alycia J. Weinberger

MagAO is the new adaptive optics system with visible-light and infrared science cameras, located on the 6.5-m Magellan “Clay” telescope at Las Campanas Observatory, Chile. The instrument locks on natural guide stars (NGS) from 0th to 16th R-band magnitude, measures turbulence with a modulating pyramid wavefront sensor binnable from 28×28 to 7×7 subapertures, and uses a 585-actuator adaptive secondary mirror (ASM) to provide at wavefronts to the two science cameras. MagAO is a mutated clone of the similar AO systems at the Large Binocular Telescope (LBT) at Mt. Graham, Arizona. The high-level AO loop controls up to 378 modes and operates at frame rates up to 1000 Hz. The instrument has two science cameras: VisAO operating from 0.5-1μm and Clio2 operating from 1-5 μm. MagAO was installed in 2012 and successfully completed two commissioning runs in 2012-2013. In April 2014 we had our first science run that was open to the general Magellan community. Observers from Arizona, Carnegie, Australia, Harvard, MIT, Michigan, and Chile took observations in collaboration with the MagAO instrument team. Here we describe the MagAO instrument, describe our on-sky performance, and report our status as of summer 2014.


European Journal of Control | 2011

Observer-Based Control Techniques for the LBT Adaptive Optics under Telescope Vibrations

Guido Agapito; Fernando Quiros-Pacheco; Pietro Tesi; Armando Riccardi; Simone Esposito

This paper addresses the application of observer-based control techniques for the adaptive optics system of the LBT telescope. In such a context, attention is focused on the use of Kalman and H∞ filters to estimate the temporal evolution of phase perturbations due to the atmospheric turbulence and the telescope vibrations acting on tip/tilt modes. We shall present preliminary laboratory experiments carried out at the Osservatorio Astrofisico di Arcetri using the Kalman filter.


Proceedings of SPIE | 2008

A preliminary overview of the multiconjugate adaptive optics module for the E-ELT

Emiliano Diolaiti; Jean-Marc Conan; Italo Foppiani; Matteo Lombini; Cyril Petit; Clélia Robert; Laura Schreiber; P. Ciliegi; Enrico Marchetti; M. Bellazzini; Lorenzo Busoni; Simone Esposito; Thierry Fusco; Norbert Hubin; Fernando Quiros-Pacheco; Andrea Baruffolo; Sandro D'Odorico; Jacopo Farinato; Benoit Neichel; Roberto Ragazzoni; Carmelo Arcidiacono; Valdemaro Biliotti; Giovanni Bregoli; Giuseppe Cosentino; Giancarlo Innocenti

The multi-conjugate adaptive optics module for the European Extremely Large Telescope has to provide a corrected field of medium to large size (up to 2 arcmin), over the baseline wavelength range 0.8-2.4 μm. The current design is characterized by two post-focal deformable mirrors, that complement the correction provided by the adaptive telescope; the wavefront sensing is performed by means of a high-order multiple laser guide star wavefront sensor and by a loworder natural guide star wavefront sensor. The present status of a two years study for the advanced conceptual design of this module is reported.


The Astrophysical Journal | 2015

The Absolute Age of the Globular Cluster M15 Using Near-infrared Adaptive Optics Images from PISCES/LBT.

M. Monelli; Vincenzo Testa; G. Bono; I. Ferraro; G. Iannicola; G. Fiorentino; Carmelo Arcidiacono; Davide Massari; K. Boutsia; Runa Briguglio; Lorenzo Busoni; Roberta Carini; Laird M. Close; G. Cresci; Simone Esposito; Luca Fini; M. Fumana; Juan Carlos Guerra; John M. Hill; Craig Kulesa; F. Mannucci; Donald W. McCarthy; Enrico Pinna; Alfio Puglisi; Fernando Quiros-Pacheco; Roberto Ragazzoni; Armando Riccardi; A. Skemer; Marco Xompero

We present deep near-infrared (NIR) J, Ks photometry of the old, metal-poor Galactic globular cluster M\,15 obtained with images collected with the LUCI1 and PISCES cameras available at the Large Binocular Telescope (LBT). We show how the use of First Light Adaptive Optics system coupled with the (FLAO) PISCES camera allows us to improve the limiting magnitude by ~2 mag in Ks. By analyzing archival HST data, we demonstrate that the quality of the LBT/PISCES color magnitude diagram is fully comparable with analogous space-based data. The smaller field of view is balanced by the shorter exposure time required to reach a similar photometric limit. We investigated the absolute age of M\,15 by means of two methods: i) by determining the age from the position of the main sequence turn-off; and ii) by the magnitude difference between the MSTO and the well-defined knee detected along the faint portion of the MS. We derive consistent values of the absolute age of M15, that is 12.9+-2.6 Gyr and 13.3+-1.1 Gyr, respectively.


Proceedings of SPIE | 2004

Kalman-filter-based control for adaptive optics

Cyril Petit; Fernando Quiros-Pacheco; Jean-Marc Conan; Caroline Kulcsár; Henri-François Raynaud; Thierry Fusco; Gerard Rousset

While the first MultiConjugate Adaptive Optics (MCAO) experimental set-ups are presently under construction, a growing attention is paid to the control loop. This is indeed a key element in the optimization process, especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications: simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering, which seems a very promising solution. We have already proposed and simulated in simple cases a formalized adaptation of Kalman filtering to Adaptive Optics (AO) and MCAO. We wish now to characterize for the first time the frequential properties of this Kalman filter and to refine it so as to improve its robustness and performance, for instance in the presence of static aberrations and vibrations. Comparisons with classical controllers are proposed. Aliasing reduction could also be considered. In the near future, Kalman filter performance and robustness should be tested for realistic AO and MCAO configurations on a simulator and an experimental set-up.

Collaboration


Dive into the Fernando Quiros-Pacheco's collaboration.

Researchain Logo
Decentralizing Knowledge