Fernando Ribeiro Oliveira
Federal University of Rio Grande do Norte
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando Ribeiro Oliveira.
Plasma Chemistry and Plasma Processing | 2012
Fernando Ribeiro Oliveira; Laura Erkens; Raúl Fangueiro; António Pedro Souto
Banana fibers, an environmentally friendly raw material freely available, were physically modified by atmospheric dielectric barrier discharge (DBD) plasma treatment of different dosages. The influence of the plasma treatment applied on the banana fibers was performed considering the mechanical properties, wettability, chemical composition and surface morphology. These properties were evaluated by tensile tests, static and dynamic contact angle, Fourier transform infrared spectroscopy, energy dispersive spectroscopy, X-ray diffractometry, conductivity and pH of aqueous extract, differential scanning calorimetry and scanning electron microscopy images. We compare untreated and treated fibers with three different DBD plasma dosages. The results of this study showed considerable modifications in banana fibers when these are submitted to plasma treatment.
Materials Science Forum | 2010
Fernando Ribeiro Oliveira; António Pedro Souto; Noemi Carneiro; José Heriberto Oliveira do Nascimento
Dyeing of polyamide fibers is normally made with acid dyes, however, it is somewhat difficult to achieve uniformity and control of pH and temperature must be carefully made. The possibility to dye polyamide 6.6 in a larger gamut of colours with good properties may be achieved using other classes of dyes after plasmatic modifications in textile substrates. Polyamide 6.6 fabrics were treated with Double Barrier Discharge (DBD) plasma obtained at atmospheric conditions in a semi-industrial machine and very positive results were obtained when dyeing is made with direct dyes. Surface modifications were evaluated, namely, roughness in terms of Atomic Force Microscopy, changes in chemical composition by X-Ray Photoelectron Spectroscopy (XPS) and microstructural analysis by SEM. In order to optimize dyeing process, different dye concentrations, pH and temperatures were attempted on dyeing with DBD treated fabrics. Important parameters were studied such as exhaustion, colour strength (K/S) and washing fastness. Chemical and physical effects of plasmatic discharge contribute to excellent results obtained in yield, exhaustion and fastness of dyeing of polyamide with direct dyes demonstrating extensive improvement of dye exhaustion from baths, easily achieving 100% in shorter dyeing times. These results mean less dyes in effluents and less time for dyeing processes. The cleanness of the processes and lower cost of direct dyeing are additional advantages when compared to difficulties in acidic dyeing of polyamide.
Fems Microbiology Letters | 2015
Fernando Ribeiro Oliveira; Cláudia Sofia Afonso de Lima; Susana Brás; Ângela Maria Oliveira Sousa França; Nuno Cerca
Coagulase-negative staphylococci (CoNS) are common bacterial colonizers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterized in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intraspecies level. On the other hand, biofilm disruption assays demonstrated important inter- and intraspecies differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesized that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation.
The Journal of Antibiotics | 2013
Fernando Ribeiro Oliveira; Nuno Cerca
Antibiotic resistance and biofilm formation ability among coagulase-negative staphylococci in healthy individuals from Portugal
Journal of Textile Engineering | 2012
António Pedro Souto; Fernando Ribeiro Oliveira; Marta Fernandes; Noémia Carneiro
In this work, a study of the dyeing of polyamide fabrics after surface modification by dielectric barrier discharge (DBD) plasma treatment was performed. Physical and chemical properties of the textile substrate were characterized before and after plasmatic modification, showing important changes in water contact angle, hydrophility, chemical surface composition and morphology. Dyeing properties with direct dyes were evaluated by means of dyebath exhaustion, color strength and washing fastness tests, demonstrating that plasma treated fabrics can achieve excellent dye uptake, high rate of dyeing and good uniformity, good fastness levels, meaning a great challenge and opportunity for industrial application.
Desalination and Water Treatment | 2016
Késia Karina O. S. Silva; C. A. Paskocimas; Fernando Ribeiro Oliveira; José Heriberto Oliveira do Nascimento; Andrea Zille
Ceramic porous membranes sintered at two different temperature using polyvinyl alcohol and ethylene glycol as binders, and composed of two types of α-alumina with different particle sizes were investigated for the microfiltration of a textile effluent containing indigo dye, auxiliaries, heavy metals, oils, and solids. The physicochemical properties of the membranes and effluent were evaluated. X-ray diffraction, energy dispersive X-ray fluorescence spectroscopy, differential scanning calorimetry, and thermogravimetric analysis confirm that the thin membrane is composed of high crystalline and pure α-alumina. Scanning electron microscopy observation indicates that the membranes have smooth porous surface making it suitable for microfiltration applications. The membrane sintered at 1,450˚C exhibited higher water absorption (WA) and apparent porosity than that sintered at 1,475˚C. The apparent specific gravity and flexural strength are in inverse correlation with the WA due to the enhanced densification of the membranes. The filtered effluent was evaluated using a membrane with an average pore size of 0.4 μm and a total porosity of 29.6%. The average values of rejection were 90% for color, 93% for suspended solids, 95% for turbidity, 60% for metals, and 73% for chemical oxygen demand. These results demonstrate that low-cost ceramic alumina membranes are a very promising advanced treatment for textile industrial effluents.
Textile Dyeing (cap. 12) | 2011
António Pedro Souto; Fernando Ribeiro Oliveira; Noémia Carneiro
Plasmatic double barrier discharge (DBD) obtained in air at atmospheric conditions is widely used, among other non-thermal plasmatic alternatives, to modify chemical and physical properties of different textile polymers (Morent et al., 2007). The impacts of DBD on environmental aspects of textile processing rise to get high attention due to important reduction of costs in dyeing by savings in processing times, products, human resources, water and energy (Carneiro et al., 2001). All fibers, from natural to synthetics, can be submitted to several irradiation methods with diverse and significant meaning in different areas of textile processing (Sparavigna, 2001). The effects on surface are reported for cellulosic fibers (Carneiro et al., 2005; Souto et al., 1996), wool (Rakowski, 1992), polyester (Oktem et al., 2000, Leurox et al., 2009), polyamide 6.6 (Papas et al., 2006; Oliveira et al., 2009), polyamide 6 (Dumitrasku & Borcia, 2006), polytetrafluoroethylene (Liu et al., 2004), polyethylene (Oosterom et al., 2006), polypropylene (Yaman et al., 2009) and meta aramid (Chen et al., 2008), being roughness, microporosity and creation of polarity by oxidation mechanisms the main modifications induced by several types of irradiation techniques. Acid dyes are the most common in use for polyamide dyeing, but some problems are very well known, as difficulties to manage uniformity and fastness. The necessary pH to achieve a good exhaustion of dye in the fiber must be carefully controlled and sometimes is excessively low. Reactive dyes are very important for the dyeing of cellulosic and protein fibers, but in polyamide the results are not equivalent due to paler colors obtained (Soleimani et al., 2006). Reactive dyes for cellulose are similar to acid dyes in their chromophoric structure, but they possess reactive groups able to react chemically with the fiber in the presence of alkali. Only few of these dyes have been developed for polyamide application with ability to react with amino groups in fiber structure without the need of alkaline fixation. Stanalan (Dystar) and Eriofast (Ciba) are well known dyes for this purpose. Reactive dyes for cotton fibers, Procion (Dystar), Kayacelon (Nippon Kayaku), and Drimarene (Clariant) were tested for polyamide dyeing at boiling temperature and different pH showing distinct results. At pH 4, the most convenient result was obtained due to a high protonation of nucleophilic amino groups, contributing to electrostatic attraction between anionic dye and positively charged fiber (Soleimani et al., 2006).
International Journal of Medical Microbiology | 2017
Fernando Ribeiro Oliveira; Ângela Maria Oliveira Sousa França; Nuno Cerca
Staphylococcus epidermidis has long been known as a major bacterial coloniser of the human skin, yet it is also a prominent nosocomial pathogen. Its remarkable ability to assemble structured biofilms has been its major known pathogenic feature to date. Notwithstanding important discoveries that have been accomplished, several questions about S. epidermidis biofilm formation still remain to be elucidated. This study aimed to assess whether iron availability modulates S. epidermidis biofilm formation and, if so, to explore how such modulation occurs. Biofilms of three S. epidermidis strains were grown under iron-enriched/-deficient conditions and several physiologic and transcriptomic changes were assessed. Our data revealed that while physiologic iron levels do not compromise biofilm formation, iron excess or deficiency is detrimental for this process. Conversely, biofilm cells were not affected in the same way when grown planktonically. By studying biofilm cells in detail we found that their viability and cultivability were seriously compromised by iron deficiency. Also, a temporal analysis of biofilm formation revealed that iron excess/deficiency: i) impaired biomass accumulation from 6h onwards, and ii) induced changes in the biofilm structure, indicating that iron availability plays a pivotal role from an early biofilm development stage. The expression of several putative iron-related genes, namely encoding siderophore biosynthesis/transport-related proteins, was found to be modulated by iron availability, providing a biological validation of their function on S. epidermidis iron metabolism. This study therefore provides evidence that iron plays a pivotal role on S. epidermidis biofilm formation.
Desalination and Water Treatment | 2016
Fernando Ribeiro Oliveira; Felipe M.F. Galvão; O. Nascimento; António Pedro Souto; Andrea Zille
Physicochemical and dyeing properties using reactive dyes of curaua and banana fibers were studied by means of color strength (K/S), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy analyses. SEM analysis of alkali-treated fibers showed an increase in roughness due to surface lignin and hemicellulose defibrillation. DSC analysis showed for all the samples an endothermic and an exothermic peak at 70‐80 and 340‐360˚C due to the loss of adsorbed/ absorbed water and to decomposition of α-cellulose, respectively. Alkali-treated fibers displayed a second peak around 290˚C attributed to the degradation of hemicellulose. FTIR spectra of the studied fibers show similar bands with different intensities attributed to the main components of cellulose-based materials. Alkali-pretreated fibers demonstrated excellent dyeing ability for all the tested dyes. Dye absorption depends on the chemical fiber, dye structure, and concentration. The results of washing fastness are very good for all the tested fibers. The dyeing effluent treated with an advanced microfiltration method using an improved alumina ceramic membrane shows an average efficiency of 98% in turbidity and color reduction. Low-cost ceramic alumina microfiltration membranes are a very promising advanced treatment for textile industrial effluents allowing water reuse.
Desalination and Water Treatment | 2016
Fernando Ribeiro Oliveira; Fernanda Steffens; António Pedro Souto; Andrea Zille
Low-temperature plasma technology becomes more and more attractive compared with traditional wet processes in textile preparation and finishing due to its high efficiency and low environmental impact. The objective of this study was to investigate the influence of dielectric barrier discharge plasma treatment on the trichromic dyeing process of polyamide 6.6 (PA66) and the reuse of the generated effluents for new dyeing processes. Chemical and physical characterization of the plasma-treated polyamide fibers was studied by means of static and dynamic contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy micrographs, and atomic force microscopy (AFM). Plasma treatment greatly increases the hydrophilicity and adhesion of PA66, due to the increase of polar groups and roughness on the fibers surface as confirmed by XPS and AFM. The kinetics of dyeing is quicker but leveled with high rubbing, light, and washing fastness quality. The reuse of the effluent obtained after dyeing of the plasma-treated fabrics showed excellent results of reproducibility, uniformity, and washing fastness. It was possible to reproduce the standard color for three dyeing cycles using the same effluent reducing the effluent load with a significant diminution in costs and environmental impact.
Collaboration
Dive into the Fernando Ribeiro Oliveira's collaboration.
José Heriberto Oliveira do Nascimento
Federal University of Rio Grande do Norte
View shared research outputs