Fernando Ricardo
University of Aveiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernando Ricardo.
Trends in Biotechnology | 2015
Miguel Costa Leal; Tânia Pimentel; Fernando Ricardo; Rui Rosa; Ricardo Calado
Market globalization and recurring food safety alerts have resulted in a growing consumer awareness of the need for food traceability. This is particularly relevant for seafood due to its perishable nature and importance as a key protein source for the population of the world. Here, we provide an overview of the current needs for seafood origin traceability, along with the limitations and challenges for its implementation. We focus on geochemical, biochemical, and molecular tools and how they should be optimized to be implemented globally and to address our societal needs. We suggest that seafood traceability is key to enforcing food safety regulations and fisheries control, combat fraud, and fulfill present and future expectations of conscientious producers, consumers, and authorities.
Scientific Reports | 2015
Fernando Ricardo; Luciana Génio; Miguel Costa Leal; Rui Albuquerque; Henrique Queiroga; Rui Rosa; Ricardo Calado
Determining seafood geographic origin is critical for controlling its quality and safeguarding the interest of consumers. Here, we use trace element fingerprinting (TEF) of bivalve shells to discriminate the geographic origin of specimens. Barium (Ba), manganese (Mn), magnesium (Mg), strontium (Sr) and lead (Pb) were quantified in cockle shells (Cerastoderma edule) captured with two fishing methods (by hand and by hand-raking) and from five adjacent fishing locations within an estuarine system (Ria de Aveiro, Portugal). Results suggest no differences in TEF of cockle shells captured by hand or by hand-raking, thus confirming that metal rakes do not act as a potential source of metal contamination that could somehow bias TEF results. In contrast, significant differences were recorded among locations for all trace elements analysed. A Canonical Analysis of Principal Coordinates (CAP) revealed that 92% of the samples could be successfully classified according to their fishing location using TEF. We show that TEF can be an accurate, fast and reliable method to determine the geographic origin of bivalves, even among locations separated less than 1 km apart within the same estuarine system. Nonetheless, follow up studies are needed to determine if TEF can reliably discriminate between bivalves originating from different ecosystems.
Scientific Reports | 2015
Fernando Ricardo; Tânia Pimentel; Ana S.P. Moreira; Felisa Rey; Manuel A. Coimbra; M. Rosário M. Domingues; Pedro Domingues; Miguel Costa Leal; Ricardo Calado
Geographic traceability of seafood is key for controlling its quality and safeguarding consumers’ interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas.
The Biological Bulletin | 2016
Felisa Rey; Ana S.P. Moreira; Fernando Ricardo; Manuel A. Coimbra; M. Rosário M. Domingues; Pedro Domingues; Rui Rosa; Henrique Queiroga; Ricardo Calado
Embryonic development of decapod crustaceans relies on yolk reserves supplied to offspring through maternal provisioning. Unequal partitioning of nutritional reserves during oogenesis, as well as fluctuating environmental conditions during incubation, can be sources of within-brood variability. Ultimately, this potential variability may promote the occurrence of newly hatched larvae with differing yolk reserves and an unequal ability to endure starvation and/or suboptimal feeding during their early pelagic life. The present study evaluated maternal provisioning by analyzing fatty acid (FA) profiles in newly extruded embryos of Carcinus maenas. Also assessed were the dynamics of such provisioning during embryogenesis, such as embryo location within the regions of the brooding chamber (left external, left internal, right external, and right internal). The FA profiles surveyed revealed a uniform transfer of maternal reserves from the female to the entire mass of embryos, and homogeneous embryonic development within the brooding chamber. Although C. maenas produces a densely packed mass of embryos that are unevenly distributed within its brooding chamber, this factor is not a source of within-brood variability during incubation. This finding contrasts with data already recorded for larger-sized brachyuran crabs, and suggests that the maternal behavior of C. maenas promotes homogeneous lipid catabolism during embryogenesis.
Journal of Cellular Physiology | 2016
João Demétrio Martins; Elisabete Maciel; Ana Maria Silva; Isabel C.F.R. Ferreira; Fernando Ricardo; Pedro Domingues; Bruno Miguel Neves; M.R.M. Domingues; Maria Teresa Cruz
Occupational exposure to low molecular weight reactive chemicals often leads to development of allergic reactions such as allergic contact dermatitis and respiratory allergies. Further insights into the interaction of these chemicals with physiopathological relevant cellular models might provide the foundations for novel non‐animal approaches to safety assessment. In this work we used the human THP‐1 cell line to determine phospholipidome changes induced by the skin sensitizer 1‐fluoro‐2,4‐dinitrobenzene (DNFB), the respiratory allergen hexamethylene diisocyanate (HDI), and the irritant methyl salicylate (MESA). We detected that these chemicals differently induce lipid peroxidation and modulate THP‐1 IL‐1β, IL‐12B, IL‐8, CD86, and HMOX1 transcription. Decreased phosphatidylethanolamine content was detected in cells exposed to MESA, while profound alterations in the relative abundance of cardiolipin species were observed in cells exposed to DNFB. All chemicals tested induced a decrease in the relative abundance of plasmanyl phosphatidylcholine species PC (O‐16:0e/18:1) and phosphatidylinositol species PI (34:1), while increasing PI (38:4). An increased abundance of oleic acid was observed in the phospholipids of cells exposed to DNFB while a decreased abundance of palmitic acid was detected in cells treated with MESA or DNFB. We conclude that both specific and common alterations at phospholipidome levels are triggered by the different chemicals, while not allowing a complete distinction between them using a Canonical Analysis of Principal Coordinates (CAP). The common effects observed at phospholipids level with all the chemicals tested might be related to unspecific cell cytotoxic mechanisms that nevertheless may contribute to the elicitation of specific immune responses. J. Cell. Physiol. 231: 2639–2651, 2016.
Scientific Reports | 2017
Tânia Pimentel; Joana Marcelino; Fernando Ricardo; Amadeu M.V.M. Soares; Ricardo Calado
Traceability of seafood has become crucial with market globalization and consumer’s awareness. The present study used PCR-DGGE and 454 pyrosequencing to assess if bacterial communities fingerprint associated to seabass (Dicentrarchus labrax) skin mucus can be used to discriminate the geographic origin of fishes cultured in three semi-intensive fish farms. PCR-DGGE and pyrosequencing results were congruent and suggested that this molecular approach has the potential to trace fish farms with a spatial resolution <500 m. Pyrosequencing results provided a detailed insight into the bacterial community composition of seabass skin mucus and revealed the existence of a core of bacterial communities within family Pseudomonadaceae and Rhodobacteraceae. This approach also allowed to recognized key OTUs that are potentially relevant to discriminate the geographic origin of the fish being surveyed. Overall, the present study increased our knowledge on farmed seabass microbiome and demonstrated that specific and unique bacterial taxa can act as natural signatures that allow us to trace fish to its respective geographic origin. Our study provides valuable clues that should be more investigated in future studies as a way to fulfill current traceability needs in the global trade of seafood.
Scientific Reports | 2017
Fernando Ricardo; Tânia Pimentel; Luciana Génio; Ricardo Calado
Understanding spatio-temporal variability of trace elements fingerprints (TEF) in bivalve shells is paramount to determine the discrimination power of this analytical approach and secure traceability along supply chains. Spatio-temporal variability of TEF was assessed in cockle (Cerastoderma edule) shells using inductively coupled plasma-mass spectrometry (ICP-MS). Four elemental ratios (Mg/Ca, Mn/Ca, Sr/Ca and Ba/Ca) were measured from the shells of specimens originating from eight different ecosystems along the Portuguese coast, as well as from four different areas, within one of them, over two consecutive years (2013 and 2014). TEF varied significantly in the shells of bivalves originating from the eight ecosystems surveyed in the present study. Linear discriminant function analyses assigned sampled cockles to each of the eight ecosystems with an average accuracy of 90%. Elemental ratios also displayed significant differences between the two consecutive years in the four areas monitored in the same ecosystem. Overall, while TEF displayed by cockle shells can be successfully used to trace their geographic origin, a periodical verification of TEF (>6 months and <1 year) is required to control for temporal variability whenever comparing specimens originating from the same area collected more than six months apart.
Estuarine Coastal and Shelf Science | 2009
Victor Quintino; Franca Sangiorgio; Fernando Ricardo; Renato Mamede; Adília Pires; Rosa Freitas; Ana Maria Rodrigues; Alberto Basset
Estuarine Coastal and Shelf Science | 2011
Rosa Freitas; Fernando Ricardo; Fábio Pereira; Leandro Sampaio; Susana Carvalho; Miguel B. Gaspar; Victor Quintino; Ana Maria Rodrigues
Estuarine Coastal and Shelf Science | 2011
Marta Lobão Lopes; Patrícia Martins; Fernando Ricardo; Ana Maria Rodrigues; Victor Quintino