Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando S. Santiago is active.

Publication


Featured researches published by Fernando S. Santiago.


Nature Medicine | 1999

New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury

Fernando S. Santiago; Harry C. Lowe; Mary M. Kavurma; Colin N. Chesterman; Andrew Jordan Baker; David Atkins; Levon M. Khachigian

Early growth response factor-1 (Egr-1) binds to the promoters of many genes whose products influence cell movement and replication in the artery wall. Here we targeted Egr-1 using a new class of DNA-based enzyme that specifically cleaved Egr-1 mRNA, blocked induction of Egr-1 protein, and inhibited cell proliferation and wound repair in culture. The DNA enzyme also inhibited Egr-1 induction and neointima formation after balloon injury to the rat carotid artery wall. These findings demonstrate the utility of DNA enzymes as biological tools to delineate the specific functions of a given gene, and implicate catalytic nucleic acid molecules composed entirely of DNA as potential therapeutic agents.


Science Translational Medicine | 2012

DNAzyme targeting c-jun suppresses skin cancer growth

Hong Cai; Fernando S. Santiago; Leonel Prado-Lourenco; Bo Wang; Margaret Patrikakis; Miles P. Davenport; Ghassan J. Maghzal; Roland Stocker; Christopher R. Parish; Beng H. Chong; Graham J. Lieschke; Tak Wah Wong; Colin N. Chesterman; Douglas J. Francis; Fergal J. Moloney; Ross StC Barnetson; Gary M. Halliday; Levon M. Khachigian

Catalytic DNA molecules that target the transcription factor c-jun inhibit skin cancer growth in mice. Getting Under Cancer’s Skin Summer brings to mind barbecues, baseball, and trips to the local pool. Yet, outdoor fun can be hazardous to one’s health—too much sun exposure can increase the risk of developing skin cancer. Indeed, one in three cancers worldwide is skin-related, and currently available treatments may induce scarring or other toxicities. Cai et al. now report that the DNAzyme Dz13—which targets an mRNA that encodes a cancer-associated transcription factor, c-Jun—inhibits the growth of two common types of skin cancers: basal cell and squamous cell carcinomas. DNAzymes are single-stranded, all-DNA, catalytic molecules that specifically bind and cleave their target RNAs. The authors examined the effects of Dz13, which destroys c-jun mRNA, on animal models of skin cancer. Dz13 inhibited tumor growth, blocked neovascularization, and prevented metastasis in mouse models of skin cancer—effects that were mediated, in part, through the induction of antitumor immunity. Minimal toxicity was observed in Dz13-treated cynomolgus monkeys, minipigs, and rodents, and there were no off-target effects in more than 70 in vitro bioassays. Thus, Dz13 may prove to be a safe, effective therapy for skin cancer. Nonetheless, one is advised to pack the sun block in preparation for extra innings—or a fifth set. Worldwide, one in three cancers is skin-related, with increasing incidence in many populations. Here, we demonstrate the capacity of a DNAzyme-targeting c-jun mRNA, Dz13, to inhibit growth of two common skin cancer types—basal cell and squamous cell carcinomas—in a therapeutic setting with established tumors. Dz13 inhibited tumor growth in both immunodeficient and immunocompetent syngeneic mice and reduced lung nodule formation in a model of metastasis. In addition, Dz13 suppressed neovascularization in tumor-bearing mice and zebrafish and increased apoptosis of tumor cells. Dz13 inhibition of tumor growth, which required an intact catalytic domain, was due in part to the induction of tumor immunity. In a series of good laboratory practice–compliant toxicology studies in cynomolgus monkeys, minipigs, and rodents, the DNAzyme was found to be safe and well tolerated. It also did not interfere in more than 70 physiologically relevant in vitro bioassays, suggesting a reduced propensity for off-target effects. If these findings hold true in clinical trials, Dz13 may provide a safe, effective therapy for human skin cancer.


American Journal of Pathology | 1999

Early Growth Response Factor-1 Induction by Injury Is Triggered by Release and Paracrine Activation by Fibroblast Growth Factor-2

Fernando S. Santiago; Harry C. Lowe; Fiona L. Day; Colin N. Chesterman; Levon M. Khachigian

Cell migration and proliferation that follows injury to the artery wall is preceded by signaling and transcriptional events that converge at the promoters of multiple genes whose products can influence formation of the neointima. Transcription factors, such as early growth response factor-1 (Egr-1), with nucleotide recognition elements in the promoters of many pathophysiologically relevant genes, are expressed at the endothelial wound edge within minutes of injury. The mechanisms underlying the inducible expression of Egr-1 in this setting are not clear. Understanding this process would provide important mechanistic insights into the earliest events in the response to injury. In this report, we demonstrate that fibroblast growth factor-2 (FGF-2) is released by injury and that antibodies to FGF-2 almost completely abrogate the activation and nuclear accumulation of Egr-1. FGF-2-inducible egr-1-promoter-dependent expression is blocked by PD98059, a specific inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)-1/2 (MEK-1/2), as well as by dominant negative mutants of ERK-1/2. Inducible ERK phosphorylation after injury is dependent on release and stimulation by endogenous FGF-2. Antisense oligonucleotides directed at egr-1 mRNA suggest that Egr-1 plays a necessary role in endothelial repair after denudation of the monolayer. These findings demonstrate that inducible Egr-1 expression after injury is contingent on the release and paracrine action of FGF-2.


Journal of Biological Chemistry | 2001

Sp1 Phosphorylation Regulates Apoptosis via Extracellular FasL-Fas Engagement

Mary M. Kavurma; Fernando S. Santiago; Emanuela Bonfoco; Levon M. Khachigian

Apoptosis of smooth muscle cells (SMC) in atherosclerotic vessels can destabilize the atheromatus plaque and result in rupture, thrombosis, and sudden death. In efforts to understand the molecular processes regulating apoptosis in this cell type, we have defined a novel mechanism involving the ubiquitously expressed transcription factor Sp1. Subtypes of SMC expressing abundant levels of Sp1 produce the death agonist, Fas ligand (FasL) and undergo greater spontaneous apoptosis. Sp1 activates the FasL promoter via a distinct nucleotide recognition element whose integrity is crucial for inducible expression. Inducible FasL promoter activation is also inhibited by a dominant-negative form of Sp1. Increased SMC apoptosis is preceded by Sp1 phosphorylation, increased FasL transcription, and the autocrine/paracrine engagement of FasL with its cell-surface receptor, Fas. Inducible FasL transcription and apoptosis are blocked by dominant-negative protein kinase C-ζ, whose wild-type counterpart phosphorylates Sp1. Thus, Sp1 phosphorylation is a proapoptotic transcriptional event in vascular SMC and, given the wide distribution of this housekeeping transcription factor, may be a common regulatory theme in apoptotic signal transduction.


Journal of Immunology | 2010

Macrophage Migration Inhibitory Factor Increases Leukocyte–Endothelial Interactions in Human Endothelial Cells via Promotion of Expression of Adhesion Molecules

Qiang Cheng; Sonja J. McKeown; Leilani Llanes Santos; Fernando S. Santiago; Levon M. Khachigian; Eric Francis Morand; Michael J. Hickey

Macrophage migration inhibitory factor (MIF) has been shown to promote leukocyte–endothelial cell interactions, although whether this occurs via an effect on endothelial cell function remains unclear. Therefore, the aims of this study were to examine the ability of MIF expressed by endothelial cells to promote leukocyte adhesion and to investigate the effect of exogenous MIF on leukocyte–endothelial interactions. Using small interfering RNA to inhibit HUVEC MIF production, we found that MIF deficiency reduced the ability of TNF-stimulated HUVECs to support leukocyte rolling and adhesion under flow conditions. These reductions were associated with decreased expression of E-selectin, ICAM-1, VCAM-1, IL-8, and MCP-1. Inhibition of p38 MAPK had a similar effect on adhesion molecule expression, and p38 MAPK activation was reduced in MIF-deficient HUVECs, suggesting that MIF mediated these effects via promotion of p38 MAPK activation. In experiments examining the effect of exogenous MIF, application of MIF to resting HUVECs failed to induce leukocyte rolling and adhesion, whereas addition of MIF to TNF-treated HUVECs increased these interactions. This increase was independent of alterations in TNF-induced expression of E-selectin, VCAM-1, and ICAM-1. However, combined treatment with MIF and TNF induced de novo expression of P-selectin, which contributed to leukocyte rolling. In summary, these experiments reveal that endothelial cell-expressed MIF and exogenous MIF promote endothelial adhesive function via different pathways. Endogenous MIF promotes leukocyte recruitment via effects on endothelial expression of several adhesion molecules and chemokines, whereas exogenous MIF facilitates leukocyte recruitment induced by TNF by promoting endothelial P-selectin expression.


Cancer | 1997

Activation of the K-ras oncogene in colorectal neoplasms is Associated with decreased apoptosis†

Robyn L. Ward; Alison Velyian Todd; Fernando S. Santiago; Terence O'Connor; Nicholas J. Hawkins

Recent in vitro data indicate that the oncogenic effects of activated ras genes may be mediated, at least in part, through inhibition of apoptotic cell death. To examine this proposition in vivo, the relationship between mutations of the K‐ras gene and the frequency of apoptosis was studied in a series of 69 sporadic colorectal neoplasms (11 adenomas and 58 carcinomas).


American Journal of Pathology | 1999

Vascular Smooth Muscle Cell Proliferation and Regrowth after Mechanical Injury in Vitro Are. Egr-1/NGFI-A-Dependent

Fernando S. Santiago; David Atkins; Levon M. Khachigian

Smooth muscle cell (SMC) proliferation is a key event in renarrowing of blood vessels after balloon angioplasty. Mechanical injury imparted to the arterial wall in experimental models induces the expression of the immediate-early gene, egr-1. Egr-1 binds to and activates expression from the proximal promoters of multiple genes whose products can, in turn, influence the vascular response to injury. Here, we used antisense strategies in vitro to inhibit rat vascular SMC proliferation by directly targeting Egr-1. A series of phosphorothioate antisense oligonucleotides of 15 base length and complementary to various theoretically accessible regions within Egr-1 mRNA were synthesized and assessed for their ability to selectively inhibit SMC proliferation in an Egr-1-dependent manner. Western blot analysis revealed that two oligonucleotides, AS2 and E11, inhibited Egr-1 synthesis in cells exposed to serum without affecting levels of the zinc finger protein Sp1. AS2 and E11 inhibited serum-inducible [(3)H]thymidine incorporation into DNA, as well as serum stimulation of total cell numbers. Size-matched phosphorothioate oligonucleotides with random, scrambled, sense or mismatch sequences failed to inhibit. Antisense Egr-1 inhibition was nontoxic and reversible. These oligonucleotides also inhibited SMC regrowth after mechanical injury in vitro. Egr-1 thus plays a key regulatory role in SMC proliferation and repair following injury.


Journal of Biological Chemistry | 2003

Regulation of inducible heparanase gene transcription in activated T Cells by early growth response 1

Amanda M. de Mestre; Levon M. Khachigian; Fernando S. Santiago; Maria Staykova; Mark D. Hulett

Cleavage of heparan sulfate by the β-d-endoglucuronidase heparanase (HPSE) is a fundamental event in a number of important physiological processes including inflammation, wound healing, and angiogenesis. HPSE activity has also been directly correlated with pathological conditions such as tumor growth and metastasis and autoimmune disease. The tight regulation of HPSE expression and function is critical to ensure homeostasis of the normal physiological processes to which it contributes and to prevent imbalance toward pathological situations. Little is known about the transcriptional mechanisms that regulate HPSE expression. In this study we have shown human HPSE gene transcription in Jurkat T cells is induced upon activation. Functional analysis of the HPSE promoter has identified a 280-bp region that is highly inducible. Mutation studies together with supershift experiments have identified a 4-bp motif that binds the transcription factor early growth response-1 (Egr1) and is critical in regulating inducible HPSE gene transcription. Furthermore, the overexpression of Egr1 resulted in the enhanced activation of the HPSE promoter. By using MAPK pathway inhibitors, we have also shown that inducible expression of HPSE mRNA and the activity of the 280-bp HPSE promoter element are dependent on the ERK1/2 (MEK1/2) pathway. This pathway is critical for induction of Egr1 expression at both the mRNA and protein level in T cells, an observation that provides further support to Egr1 playing an important role as a key activator of HPSE expression. In addition, HPSE and Egr1 were shown to co-localize by immunohistochemistry to invading mononuclear leukocytes in actively induced experimental autoimmune encephalomyelitis in rats. These findings provide the first insight into the mechanisms controlling inducible transcription of the HPSE gene, and could represent an important lead into understanding how HPSE expression is deregulated in metastatic tumor cells.


Circulation Research | 2007

Yin Yang-1 Inhibits Vascular Smooth Muscle Cell Growth and Intimal Thickening by Repressing p21WAF1/Cip1 Transcription and p21WAF1/Cip1-Cdk4-Cyclin D1 Assembly

Fernando S. Santiago; Hideto Ishii; Shahida Shafi; Rohit Khurana; Peter Kanellakis; Ravinay Bhindi; Manfred Ramirez; Alex Bobik; John Martin; Colin N. Chesterman; Ian Zachary; Levon M. Khachigian

Vascular injury initiates a cascade of phenotype-altering molecular events. Transcription factor function in this process, particularly that of negative regulators, is poorly understood. We demonstrate here that the forced expression of the injury-inducible GLI-Krüppel zinc finger protein Yin Yang-1 (YY1) inhibits neointima formation in human, rabbit and rat blood vessels. YY1 inhibits p21WAF1/Cip1 transcription, prevents assembly of a p21WAF1/Cip1-cdk4-cyclin D1 complex, and blocks downstream pRbSer249/Thr252 phosphorylation and expression of PCNA and TK-1. Conversely, suppression of endogenous YY1 elevates levels of p21WAF1/Cip1, PCNA, pRbSer249/Thr252 and TK-1, and increases intimal thickening. YY1 binds Sp1 and prevents its occupancy of a distinct element in the p21WAF1/Cip1 promoter without YY1 itself binding the promoter. Additionally, YY1 induces ubiquitination and proteasome-dependent degradation of p53, decreasing p53 immunoreactivity in the artery wall. These findings define a new role for YY1 as both an inducer of p53 instability in smooth muscle cells, and an indirect repressor of p21WAF1/Cip1 transcription, p21WAF1/Cip1-cdk4-cyclin D1 assembly and intimal thickening.


Circulation Research | 2003

Blockade of vascular smooth muscle cell proliferation and intimal thickening after balloon injury by the sulfated oligosaccharide PI-88: phosphomannopentaose sulfate directly binds FGF-2, blocks cellular signaling, and inhibits proliferation.

Douglas J. Francis; Christopher R. Parish; Mark McGarry; Fernando S. Santiago; Harry C. Lowe; Kathryn J. Brown; John Bingley; Ian P. Hayward; William B. Cowden; Julie H. Campbell; Gordon R. Campbell; Colin N. Chesterman; Levon M. Khachigian

Abstract— Percutaneous transluminal coronary angioplasty is a frequently used interventional technique to reopen arteries that have narrowed because of atherosclerosis. Restenosis, or renarrowing of the artery shortly after angioplasty, is a major limitation to the success of the procedure and is due mainly to smooth muscle cell accumulation in the artery wall at the site of balloon injury. In the present study, we demonstrate that the antiangiogenic sulfated oligosaccharide, PI-88, inhibits primary vascular smooth muscle cell proliferation and reduces intimal thickening 14 days after balloon angioplasty of rat and rabbit arteries. PI-88 reduced heparan sulfate content in the injured artery wall and prevented change in smooth muscle phenotype. However, the mechanism of PI-88 inhibition was not merely confined to the antiheparanase activity of this compound. PI-88 blocked extracellular signal-regulated kinase-1/2 (ERK1/2) activity within minutes of smooth muscle cell injury. It facilitated FGF-2 release from uninjured smooth muscle cells in vitro, and super-released FGF-2 after injury while inhibiting ERK1/2 activation. PI-88 inhibited the decrease in levels of FGF-2 protein in the rat artery wall within 8 minutes of injury. PI-88 also blocked injury-inducible ERK phosphorylation, without altering the clotting time in these animals. Optical biosensor studies revealed that PI-88 potently inhibited (Ki 10.3 nmol/L) the interaction of FGF-2 with heparan sulfate. These findings show for the first time the capacity of this sulfated oligosaccharide to directly bind FGF-2, block cellular signaling and proliferation in vitro, and inhibit injury-induced smooth muscle cell hyperplasia in two animal models. As such, this study demonstrates a new role for PI-88 as an inhibitor of intimal thickening after balloon angioplasty. The full text of this article is available online at http://www.circresaha.org.

Collaboration


Dive into the Fernando S. Santiago's collaboration.

Top Co-Authors

Avatar

Levon M. Khachigian

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Colin N. Chesterman

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Alex Bobik

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Parish

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Harry C. Lowe

Concord Repatriation General Hospital

View shared research outputs
Top Co-Authors

Avatar

Hideto Ishii

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark D. Hulett

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robyn L. Ward

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge