Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando Sequeira is active.

Publication


Featured researches published by Fernando Sequeira.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Realized niche shift during a global biological invasion.

Reid Tingley; Marcelo Vallinoto; Fernando Sequeira; Michael R. Kearney

Significance Species’ distributions result from dispersal and physiological constraints, interactions with other species, and ultimately, evolution. Biological invasions result from the deliberate or accidental movement of species between regions they would not reach through natural dispersal and can cause major conservation, economic, and human health issues. However, invasions also provide fascinating insights into species’ distribution limits. We investigate the invasion of the cane toad from South America to Australia by comparing the results of two modeling approaches: one considering physiological constraints and the other considering the joint influences of physiology, dispersal, and biotic interactions. Our findings demonstrate that the cane toad is limited in its native distribution by biotic interactions but, in Australia, is free to fill its climatic potential. Accurate forecasts of biological invasions are crucial for managing invasion risk but are hampered by niche shifts resulting from evolved environmental tolerances (fundamental niche shifts) or the presence of novel biotic and abiotic conditions in the invaded range (realized niche shifts). Distinguishing between these kinds of niche shifts is impossible with traditional, correlative approaches to invasion forecasts, which exclusively consider the realized niche. Here we overcome this challenge by combining a physiologically mechanistic model of the fundamental niche with correlative models based on the realized niche to study the global invasion of the cane toad Rhinella marina. We find strong evidence that the success of R. marina in Australia reflects a shift in the species’ realized niche, as opposed to evolutionary shifts in range-limiting traits. Our results demonstrate that R. marina does not fill its fundamental niche in its native South American range and that areas of niche unfilling coincide with the presence of a closely related species with which R. marina hybridizes. Conversely, in Australia, where coevolved taxa are absent, R. marina largely fills its fundamental niche in areas behind the invasion front. The general approach taken here of contrasting fundamental and realized niche models provides key insights into the role of biotic interactions in shaping range limits and can inform effective management strategies not only for invasive species but also for assisted colonization under climate change.


BMC Evolutionary Biology | 2009

On the edge of Bantu expansions: mtDNA, Y chromosome and lactase persistence genetic variation in southwestern Angola

Margarida Coelho; Fernando Sequeira; Donata Luiselli; Sandra Beleza; Jorge Rocha

BackgroundCurrent information about the expansion of Bantu-speaking peoples is hampered by the scarcity of genetic data from well identified populations from southern Africa. Here, we fill an important gap in the analysis of the western edge of the Bantu migrations by studying for the first time the patterns of Y-chromosome, mtDNA and lactase persistence genetic variation in four representative groups living around the Namib Desert in southwestern Angola (Ovimbundu, Ganguela, Nyaneka-Nkumbi and Kuvale). We assessed the differentiation between these populations and their levels of admixture with Khoe-San groups, and examined their relationship with other sub-Saharan populations. We further combined our dataset with previously published data on Y-chromosome and mtDNA variation to explore a general isolation with migration model and infer the demographic parameters underlying current genetic diversity in Bantu populations.ResultsCorrespondence analysis, lineage sharing patterns and admixture estimates indicate that the gene pool from southwestern Angola is predominantly derived from West-Central Africa. The pastoralist Herero-speaking Kuvale people were additionally characterized by relatively high frequencies of Y-chromosome (12%) and mtDNA (22%) Khoe-San lineages, as well as by the presence of the -14010C lactase persistence mutation (6%), which likely originated in non-Bantu pastoralists from East Africa. Inferred demographic parameters show that both male and female populations underwent significant size growth after the split between the western and eastern branches of Bantu expansions occurring 4000 years ago. However, males had lower population sizes and migration rates than females throughout the Bantu dispersals.ConclusionGenetic variation in southwestern Angola essentially results from the encounter of an offshoot of West-Central Africa with autochthonous Khoisan-speaking peoples from the south. Interactions between the Bantus and the Khoe-San likely involved cattle herders from the two groups sharing common aspects of their social organization. The presence of the -14010C mutation in southwestern Angola provides a link between the East and Southwest African pastoral scenes that might have been established indirectly, through migrations of Khoe herders across southern Africa. Differences in patterns of mtDNA and Y-chromosome intrapopulation diversity and interpopulation differentiation may be explained by contrasting demographic histories underlying the current female and male genetic variation.


Conservation Genetics Resources | 2010

New primers for the amplification and sequencing of nuclear loci in a taxonomically wide set of reptiles and amphibians

Catarina Pinho; Sara Rocha; Bruno Carvalho; Susana Lopes; Sofia Mourão; Marcelo Vallinoto; Tuliana O. Brunes; Célio F. B. Haddad; Helena Gonçalves; Fernando Sequeira; Nuno Ferrand

We report new primers for the amplification and sequencing of 11 nuclear markers in squamate reptiles and anuran amphibians (five in squamates, six in anurans). Ten out of the 11 loci are introns (three of which are linked) that were amplified using an exon-primed, intron-crossing (EPIC) PCR strategy, whereas an eleventh locus spans part of a protein-coding gene. Squamate and anuran primers were initially developed for Lacerta schreiberi (Squamata: Lacertidae) and Pelodytes spp. (Anura: Pelodytidae), respectively. Cross-species amplification of the squamate markers was evaluated in four genera representing two additional families, whereas for anurans three genera corresponding to three additional families were tested. Three out of the five loci were successfully sequenced in all squamate taxa tested. Cross-amplification of the six anuran markers had lower, but still significant, success. We predict these markers will be of great utility for both population genetics and phylogenetic studies.


Molecular Ecology | 2004

Genetic exchange across a hybrid zone within the Iberian endemic golden-striped salamander, Chioglossa lusitanica

Fernando Sequeira; J. Alexandrino; Sara Rocha; Jan W. Arntzen; Nuno Ferrand

The study of hybrid zones resulting from Pleistocene vicariance is central in examining the potential of genetically diverged evolutionary units either to introgress and merge or to proceed with further isolation. The hybrid zone between two mitochondrial lineages of Chioglossa lusitanica is located near the Mondego River in Central Portugal. We used mitochondrial and nuclear diagnostic markers to conduct a formal statistical analysis of the Chioglossa hybrid zone in the context of tension zone theory. Key results are: (i) cline centres are not coincident for all markers, with average widths of ca. 2–15 km; (ii) heterozygote deficit was not observed across loci near the transect centre; (iii) associations of parental allele combinations (‘linkage disequilibrium’R) were not detected either across loci or across the transect. These observations suggest that the Chioglossa hybrid zone is not a tension zone with strong selection against hybrids but instead one shaped mostly by neutral mixing. The patterns uncovered suggest a complex history of populations over a small scale that may be common in southern Pleistocene refugia.


Molecular Phylogenetics and Evolution | 2010

Gene and species trees of a Neotropical group of treefrogs: Genetic diversification in the Brazilian Atlantic Forest and the origin of a polyploid species

Tuliana O. Brunes; Fernando Sequeira; Célio F. B. Haddad; João Alexandrino

The Neotropical Phyllomedusa burmeisteri treefrog group includes four diploid (P. bahiana, P. burmeisteri, P. distincta and P. iheringii) and one tetraploid (P. tetraploidea) forms. Here we use mitochondrial and nuclear sequence variation from across its range to verify if recognized morphospecies correspond to phylogenetic clades, examine the origin of the polyploid P. tetraploidea, and compare range wide patterns of diversification to those of other BAF organisms. We compared single gene trees with one Bayesian multi-gene tree, and one Bayesian species tree inferred under a coalescent framework. Our mtDNA phylogenetic analyses showed that P. bahiana, P. burmeisteri and P. iheringii correspond to monophyletic clades, while P. distincta and P. tetraploidea were paraphyletic. The nuclear gene trees were concordant in revealing two moderately supported groups including (i) P. bahiana and P. burmeisteri (northern species) and (ii) P. distincta, P.tetraploidea and P. iheringii (southern species). The multi-gene tree and the species tree retrieved similar topologies, giving high support to the northern and southern clades, and to the sister-taxa relationship between P. tetraploidea and P. distincta. Estimates of (t)MRCA suggest a major split within the P. burmeisteri group at ≈ 5 Myr (between northern and southern groups), while the main clades were originated between ≈ 0.4 and 2.5 Myr, spanning the late Pliocene and Pleistocene. Patterns of geographic and temporal diversification within the group were congruent with those uncovered for other co-distributed organisms. Independent paleoecological and geological data suggest that vicariance associated with climatic oscillations and neotectonic activity may have driven lineage divergence within the P. burmeisteri group. P. tetraploidea probably originated from polyploidization of P. distincta or from a common ancestor.


BMC Evolutionary Biology | 2011

Hybridization and massive mtDNA unidirectional introgression between the closely related Neotropical toads Rhinella marina and R. schneideri inferred from mtDNA and nuclear markers

Fernando Sequeira; Davidson Sodré; Nuno Ferrand; José Ar Bernardi; Iracilda Sampaio; Horacio Schneider; Marcelo Vallinoto

BackgroundThe classical perspective that interspecific hybridization in animals is rare has been changing due to a growing list of empirical examples showing the occurrence of gene flow between closely related species. Using sequence data from cyt b mitochondrial gene and three intron nuclear genes (RPL9, c-myc, and RPL3) we investigated patterns of nucleotide polymorphism and divergence between two closely related toad species R. marina and R. schneideri. By comparing levels of differentiation at nuclear and mtDNA levels we were able to describe patterns of introgression and infer the history of hybridization between these species.ResultsAll nuclear loci are essentially concordant in revealing two well differentiated groups of haplotypes, corresponding to the morphologically-defined species R. marina and R. schneideri. Mitochondrial DNA analysis also revealed two well-differentiated groups of haplotypes but, in stark contrast with the nuclear genealogies, all R. schneideri sequences are clustered with sequences of R. marina from the right Amazon bank (RAB), while R. marina sequences from the left Amazon bank (LAB) are monophyletic. An Isolation-with-Migration (IM) analysis using nuclear data showed that R. marina and R. schneideri diverged at ≈ 1.69 Myr (early Pleistocene), while R. marina populations from LAB and RAB diverged at ≈ 0.33 Myr (middle Pleistocene). This time of divergence is not consistent with the split between LAB and RAB populations obtained with mtDNA data (≈ 1.59 Myr), which is notably similar to the estimate obtained with nuclear genes between R. marina and R. schneideri. Coalescent simulations of mtDNA phylogeny under the speciation history inferred from nuclear genes rejected the hypothesis of incomplete lineage sorting to explain the conflicting signal between mtDNA and nuclear-based phylogenies.ConclusionsThe cytonuclear discordance seems to reflect the occurrence of interspecific hybridization between these two closely related toad species. Overall, our results suggest a phenomenon of extensive mtDNA unidirectional introgression from the previously occurring R. schneideri into the invading R. marina. We hypothesize that climatic-induced range shifts during the Pleistocene/Holocene may have played an important role in the observed patterns of introgression.


Molecular Phylogenetics and Evolution | 2013

Cryptic patterns of diversification of a widespread Amazonian woodcreeper species complex (Aves: Dendrocolaptidae) inferred from multilocus phylogenetic analysis: implications for historical biogeography and taxonomy.

Tiago Sousa-Neves; Alexandre Aleixo; Fernando Sequeira

Inferring evolutionary relationships between recently diverged taxa is still challenging, especially taking into account the likely occurrence of incomplete lineage sorting and/or introgression. The Xiphorhynchus pardalotus/ocellatus species complex includes between two to three polytypic species and eight to nine subspecies distributed throughout most of lowland Amazonia and the foothills of the eastern Andes. To understand its historical diversification and address the main unsettled issues of phylogenetic relationships and taxonomy, we apply several approaches using data from two mitochondrial (Cyt b and ND2) and three nuclear genes (β-fibint7, CPZint3 and CRYAAint1) for all described species and most subspecies of this complex. We compared single gene trees with a multilocus concatenated tree and Bayesian species tree inferred under a coalescent framework ((*)BEAST). Our results showed a general pattern of incongruence among gene trees and multilocus trees. Despite of this, the coalescent-based species tree analysis supports the sister-taxa relationship of X. ocellatus and X. chunchotambo, while X. pardalotus comes out as the basal taxon. With exception of the last, our results revealed within both X. ocellatus and X. chunchotambo high levels of genetic differentiation (p-distances 0.5-5.5%) with well-supported lineages. Our phylogenetic analyses showed several incongruences with current subspecies taxonomy, revealing that X. o. ocellatus is paraphyletic relative to X. o. perplexus, and the currently recognized subspecies X. c. napensis corresponds to two distinct evolutionary lineages, which are not supported as sister-lineages. In addition, the deep level of genetic divergence between X. o. beauperthuysii and the extant subspecies of X. ocellatus is more consistent with species-level differences found in this complex. Divergence time estimates were consistent with a historical scenario of intense population subdivision and speciation during the Early-mid Pleistocene. The spatial pattern and timing of diversification overlap broadly with that reported for other Amazonian vertebrate lineages.


PLOS ONE | 2013

Cryptic Genetic Diversity Is Paramount in Small-Bodied Amphibians of the Genus Euparkerella (Anura: Craugastoridae) Endemic to the Brazilian Atlantic Forest

Luciana A. Fusinatto; João Alexandrino; Célio F. B. Haddad; Tuliana O. Brunes; Carlos Frederico Duarte Rocha; Fernando Sequeira

Morphological similarity associated to restricted distributions and low dispersal abilities make the direct developing “Terrarana” frogs of the genus Euparkerella a good model for examining diversification processes. We here infer phylogenetic relationships within the genus Euparkerella, using DNA sequence data from one mitochondrial and four nuclear genes coupled with traditional Bayesian phylogenetic reconstruction approaches and more recent coalescent methods of species tree inference. We also used Bayesian clustering analysis and a recent Bayesian coalescent-based approach specifically to infer species delimitation. The analysis of 39 individuals from the four known Euparkerella species uncovered high levels of genetic diversity, especially within the two previously morphologically-defined E. cochranae and E. brasiliensis. Within these species, the gene trees at five independent loci and trees from combined data (concatenated dataset and the species tree) uncovered six deeply diverged and geographically coherent evolutionary units, which may have diverged between the Miocene and the Pleistocene. These six units were also uncovered in the Bayesian clustering analysis, and supported by the Bayesian coalescent-based species delimitation (BPP), and Genealogical Sorting Index (GSI), providing thus strong evidence for underestimation of the current levels of diversity within Euparkerella. The cryptic diversity now uncovered opens new opportunities to examine the origins and maintenance of microendemism in the context of spatial heterogeneity and/or human induced fragmentation of the highly threatened Brazilian Atlantic forest hotspot.


Amphibia-reptilia | 2006

Assessing the phylogenetic signal of the nuclear β-Fibrinogen intron 7 in salamandrids (Amphibia: Salamandridae)

Fernando Sequeira; Nuno Ferrand; D. James Harris

The potential of the seventh intron of the β-subunit of the fibrinogen gene (β-fibint 7) for phylogenetic analysis within the Salamandridae family was explored, comparing the topologies of trees based on this marker to those based on mitochondrial 12S rRNA gene previously published. Using primers designed specifically for amphibians, we amplified 25 sequences of β-fibint 7 corresponding to 15 species of salamandrids and one plethodontid species. There was considerable length variation among the β-fibint 7 sequences examined, ranging from 1123 bp in S. atra to 400 bp in P. waltl. Many aspects of the phylogenetic relationships estimated by the two independent loci were congruent and corroborate current taxonomic hypothesis. Although the number of taxa analysed is small, the data obtained in this work suggested that β-fibint 7 is a useful marker for assessing phylogenetic relationships within the Salamandridae family, and is probably appropriate for phylogenetic studies among closely related salamanders that have diverged over the last 20 Myr.


Zoologica Scripta | 2010

Phylogeny and biogeography of the Rhinella marina species complex (Amphibia, Bufonidae) revisited: implications for Neotropical diversification hypotheses

Marcelo Vallinoto; Fernando Sequeira; Davidson Sodré; José Ar Bernardi; Iracilda Sampaio; Horacio Schneider

Vallinoto, M., Sequeira, F., Sodré, D., Bernardi, J. A. R., Sampaio, I. & Schneider, H. (2009). Phylogeny and biogeography of the Rhinella marina species complex (Amphibia, Bufonidae) revisited: implications for Neotropical diversification hypotheses. —Zoologica Scripta, 39, 128–140.

Collaboration


Dive into the Fernando Sequeira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcelo Vallinoto

Federal University of Pará

View shared research outputs
Top Co-Authors

Avatar

Davidson Sodré

Federal University of Pará

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Horacio Schneider

Federal University of Pará

View shared research outputs
Top Co-Authors

Avatar

Iracilda Sampaio

Federal University of Pará

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge