Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando T. Andón is active.

Publication


Featured researches published by Fernando T. Andón.


Accounts of Chemical Research | 2013

Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials.

Fernando T. Andón; Bengt Fadeel

Engineered nanomaterials offer numerous and tantalizing opportunities in many sectors of society, including medicine. Needless to say, attention should also be paid to the potential for unexpected hazardous effects of these novel materials. To date, much of the nanotoxicology literature has focused on the assessment of cell viability or cell death using primitive assays for the detection of plasma membrane integrity or mitochondrial function or assessment of cellular morphology. However, when assessing the cytotoxic effects of engineered nanomaterials, researchers need not only to consider whether cells are dead or alive but also to assess which of the numerous, highly specific pathways of cell death might be involved. Moreover, it is important to diagnose cell death based not only on morphological markers but on the assessment and quantification of biochemical alterations specific to each form of cell death. In this Account, we provide a description of the three major forms of programmed cell death in mammalian cells: apoptosis, autophagic cell death, and regulated necrosis, sometimes referred to as necroptosis. Apoptosis can be activated via the extrinsic (death receptor-dependent) or via the intrinsic (mitochondria-dependent) route. Apoptotic cell death may or may not require the activation of cytosolic proteases known as caspases. Autophagy (self-eating) has an important homeostatic role in the cell, mediating the removal of dysfunctional or damaged organelles thereby allowing the recycling of cellular building blocks. However, unrestrained autophagy can kill cells. Studies in recent years have revealed that necrosis that depends on activation of the kinases RIP1 and RIP3 is a major form of programmed cell death with roles in development and immunity. We also discuss recent examples of the impact of engineered nanoparticles on the three different pathways of programmed cell death. For example, acute exposure of cells to carbon nanotubes (CNTs) can induce apoptosis whereas chronic exposure to CNTs may yield an apoptosis-resistant and tumorigenic phenotype in lung epithelial cells. Several reports show that nanoparticles, including polystyrene particles, are routed to the lysosomal compartment and trigger cell death through the destabilization of lysosomal membranes with engagement of the intrinsic apoptosis pathway. In addition, a number of studies have demonstrated that nanomaterials such as CNTs, quantum dots, and gold nanoparticles can affect cellular autophagy. An improved understanding of the complexities of the nanomaterial-induced perturbation of different cell death pathways may allow for a better prediction of the consequences of human exposure.


PLOS ONE | 2015

Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: First steps towards an intelligent testing strategy

Lucian Farcal; Fernando T. Andón; Luisana Di Cristo; Bianca Maria Rotoli; Ovidio Bussolati; Enrico Bergamaschi; Agnieszka Mech; Nanna B. Hartmann; Kirsten Rasmussen; Juan Riego-Sintes; Jessica Ponti; Agnieszka Kinsner-Ovaskainen; François Rossi; Agnes G. Oomen; Peter A. Bos; Rui Chen; Ru Bai; Chunying Chen; Louise Rocks; Norma Fulton; Bryony Ross; Gary R Hutchison; Lang Tran; Sarah Mues; Rainer Ossig; Jürgen Schnekenburger; Luisa Campagnolo; Lucia Vecchione; Antonio Pietroiusti; Bengt Fadeel

Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry – hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO – uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques – precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially ‘weak-embryotoxic’ and ZnO and SiO2 NMs as ‘non-embryotoxic’. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for which TiO2 displayed higher toxicity compared with ZnO and SiO2. Importantly, the in vitro methodology applied could identify cell- and NM-specific responses, with a low variability observed between different test assays. Overall, this testing approach, based on a battery of cellular systems and test assays, complemented by an exhaustive physico-chemical characterization of NMs, could be deployed for the development of an ITS suitable for risk assessment of NMs. This study also provides a rich source of data for modeling of NM effects.


Small | 2013

Biodegradation of Single-Walled Carbon Nanotubes by Eosinophil Peroxidase

Fernando T. Andón; Alexandr A. Kapralov; Naveena Yanamala; Weihong Feng; Arjang Baygan; Benedict J. Chambers; Kjell Hultenby; Fei Ye; Muhammet S. Toprak; Birgit D. Brandner; Judith Klein-Seetharaman; Gregg P. Kotchey; Alexander Star; Anna A. Shvedova; Bengt Fadeel; Valerian E. Kagan

Eosinophil peroxidase (EPO) is one of the major oxidant-producing enzymes during inflammatory states in the human lung. The degradation of single-walled carbon nanotubes (SWCNTs) upon incubation with human EPO and H₂O₂ is reported. Biodegradation of SWCNTs is higher in the presence of NaBr, but neither EPO alone nor H₂O₂ alone caused the degradation of nanotubes. Molecular modeling reveals two binding sites for SWCNTs on EPO, one located at the proximal side (same side as the catalytic site) and the other on the distal side of EPO. The oxidized groups on SWCNTs in both cases are stabilized by electrostatic interactions with positively charged residues. Biodegradation of SWCNTs can also be executed in an ex vivo culture system using primary murine eosinophils stimulated to undergo degranulation. Biodegradation is proven by a range of methods including transmission electron microscopy, UV-visible-NIR spectroscopy, Raman spectroscopy, and confocal Raman imaging. Thus, human EPO (in vitro) and ex vivo activated eosinophils mediate biodegradation of SWCNTs: an observation that is relevant to pulmonary responses to these materials.


Advanced Drug Delivery Reviews | 2013

Mechanisms of carbon nanotube-induced toxicity: focus on pulmonary inflammation.

Kunal Bhattacharya; Fernando T. Andón; Ramy El-Sayed; Bengt Fadeel

Carbon nanotubes have gained tremendous interest in a wide range of applications due to their unique physical, chemical, and electronic properties. Needless to say, close attention to the potential toxicity of carbon nanotubes is of paramount importance. Numerous studies have linked exposure of carbon nanotubes to the induction of inflammation, a complex protective response to harmful stimuli including pathogens, damaged or dying cells, and other irritants. However, inflammation is a double-edged sword as chronic inflammation can lead to destruction of tissues thus compromising the homeostasis of the organism. Here, we provide an overview of the process of inflammation, the key cells and the soluble mediators involved, and discuss research on carbon nanotubes and inflammation, including recent studies on the activation of the so-called inflammasome complex in macrophages resulting in secretion of pro-inflammatory cytokines. Moreover, recent work has shown that inflammatory cells i.e. neutrophils and eosinophils are capable of enzymatic degradation of carbon nanotubes, with mitigation of the pro-inflammatory and pro-fibrotic effects of nanotubes thus underscoring that inflammation is both good and bad.


Nanoscale | 2014

Extracellular entrapment and degradation of single-walled carbon nanotubes

Consol Farrera; Kunal Bhattacharya; Beatrice Lazzaretto; Fernando T. Andón; Kjell Hultenby; Gregg P. Kotchey; Alexander Star; Bengt Fadeel

Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials.


Seminars in Immunology | 2017

Targeting tumor associated macrophages: The new challenge for nanomedicine

Fernando T. Andón; Elisabeth Digifico; Akihiro Maeda; Marco Erreni; Alberto Mantovani; María J. Alonso; Paola Allavena

The engineering of new nanomedicines with ability to target and kill or re-educate Tumor Associated Macrophages (TAMs) stands up as a promising strategy to induce the effective switching of the tumor-promoting immune suppressive microenvironment, characteristic of tumors rich in macrophages, to one that kills tumor cells, is anti-angiogenic and promotes adaptive immune responses. Alternatively, the loading of monocytes/macrophages in blood circulation with nanomedicines, may be used to profit from the high infiltration ability of myeloid cells and to allow the drug release in the bulk of the tumor. In addition, the development of TAM-targeted imaging nanostructures, can be used to study the macrophage content in solid tumors and, hence, for a better diagnosis and prognosis of cancer disease. The major challenges for the effective targeting of TAM with nanomedicines and their application in the clinic have already been identified. These challenges are associated to the undesirable clearance of nanomedicines by, the mononuclear phagocyte system (macrophages) in competing organs (liver, lung or spleen), upon their intravenous injection; and also to the difficult penetration of nanomedicines across solid tumors due to the abnormal vasculature and the excessive extracellular matrix present in stromal tumors. In this review we describe the recent nanotechnology-base strategies that have been developed to target macrophages in tumors.


ACS Nano | 2017

Carbon Nanotubes as Optical Sensors in Biomedicine

Consol Farrera; Fernando T. Andón; Neus Feliu

Single-walled carbon nanotubes (SWCNTs) have become potential candidates for a wide range of medical applications including sensing, imaging, and drug delivery. Their photophysical properties (i.e., the capacity to emit in the near-infrared), excellent photostability, and fluorescence, which is highly sensitive to the local environment, make SWCNTs promising optical probes in biomedicine. In this Perspective, we discuss the existing strategies for and challenges of using carbon nanotubes for medical diagnosis based on intracellular sensing as well as discuss also their biocompatibility and degradability. Finally, we highlight the potential improvements of this nanotechnology and future directions in the field of carbon nanotubes for biomedical applications.


Archive | 2014

Nanotoxicology: Towards Safety by Design

Fernando T. Andón; Bengt Fadeel

Nanomedicines interact with biological systems at the cellular level, thus offering a range of new solutions for diagnosis and “smart” therapies. However, the novel properties of nano-scale materials could also give rise to unexpected toxicities that may adversely affect human health. Herein, we discuss how the combination of nanomaterial intrinsic properties (i.e., the “synthetic identity”) and the “biological identity”—determined by the corona of biomolecules adsorbed to the nanomaterial surfaces in a living system—governs the interactions of nanomedicines with cells and tissues and the subsequent outcomes. Nanomaterial interactions with the immune system are highlighted, as such interactions are critical both for toxicological and beneficial (immunomodulatory) actions of nanomaterials. Emerging approaches in the field of nanotoxicology are summarized. Systems biology approaches, based on global genomics, proteomics, and metabolomics profiling of cells and tissues, may open up new possibilities to define the toxicity profile or mode of action of nanomaterials. High-throughput screening (HTS) for the rapid evaluation and ranking of the hazard potential of vast numbers of new nanomaterials and computational modeling of structure–activity relationships of nanostructures are also presented. Overall, this chapter attempts to highlight how nanotoxicological studies should be performed in order to enable the development of safe and useful nanomedicines for clinical applications.


Scientific Reports | 2018

Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors

Sourav P. Mukherjee; Olesja Bondarenko; Pekka Kohonen; Fernando T. Andón; Táňa Brzicová; Isabel Gessner; Sanjay Mathur; Massimo Bottini; Paolo Calligari; Lorenzo Stella; Elena R. Kisin; Anna A. Shvedova; Reija Autio; Heli Salminen-Mankonen; Riitta Lahesmaa; Bengt Fadeel

Carbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger inflammation. However, how these materials are ‘sensed’ by immune cells is not known. Here we compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene oxide (GO), on primary human monocyte-derived macrophages. Genome-wide transcriptomics assessment was performed at sub-cytotoxic doses. Pathway analysis of the microarray data revealed pronounced effects on chemokine-encoding genes in macrophages exposed to SWCNTs, but not in response to GO, and these results were validated by multiplex array-based cytokine and chemokine profiling. Conditioned medium from SWCNT-exposed cells acted as a chemoattractant for dendritic cells. Chemokine secretion was reduced upon inhibition of NF-κB, as predicted by upstream regulator analysis of the transcriptomics data, and Toll-like receptors (TLRs) and their adaptor molecule, MyD88 were shown to be important for CCL5 secretion. Moreover, a specific role for TLR2/4 was confirmed by using reporter cell lines. Computational studies to elucidate how SWCNTs may interact with TLR4 in the absence of a protein corona suggested that binding is guided mainly by hydrophobic interactions. Taken together, these results imply that CNTs may be ‘sensed’ as pathogens by immune cells.


Carbon | 2015

Lactoperoxidase-mediated degradation of single- walled carbon nanotubes in the presence of pulmonary surfactant

Kunal Bhattacharya; Ramy El-Sayed; Fernando T. Andón; Sourav P. Mukherjee; Joshua A. Gregory; Hu Li; Yinchen Zhao; Wanji Seo; Birgit D. Brandner; Muhammet S. Toprak; Klaus Leifer; Alexander Star; Bengt Fadeel

Collaboration


Dive into the Fernando T. Andón's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Star

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Anna A. Shvedova

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Birgit D. Brandner

SP Technical Research Institute of Sweden

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muhammet S. Toprak

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge