Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando Teran Arce is active.

Publication


Featured researches published by Fernando Teran Arce.


Biomaterials | 2011

Engineering the cell-material interface for controlling stem cell adhesion, migration, and differentiation.

Ramses Ayala; Chao Zhang; Darren Yang; Yongsung Hwang; Aereas Aung; Sumeet S. Shroff; Fernando Teran Arce; Ratnesh Lal; Gaurav Arya; Shyni Varghese

The effective utilization of stem cells in regenerative medicine critically relies upon our understanding of the intricate interactions between cells and their extracellular environment. While bulk mechanical and chemical properties of the matrix have been shown to influence various cellular functions, the role of matrix interfacial properties on stem cell behavior is unclear. Here, we report the striking effect of matrix interfacial hydrophobicity on stem cell adhesion, motility, cytoskeletal organization, and differentiation. This is achieved through the development of tunable, synthetic matrices with control over their hydrophobicity without altering the chemical and mechanical properties of the matrix. The observed cellular responses are explained in terms of hydrophobicity-driven conformational changes of the pendant side chains at the interface leading to differential binding of proteins. These results demonstrate that the hydrophobicity of the extracellular matrix could play a considerably larger role in dictating cellular behaviors than previously anticipated. Additionally, these tunable matrices, which introduce a new control feature for regulating various cellular functions offer a platform for studying proliferation and differentiation of stem cells in a controlled manner and would have applications in regenerative medicine.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Truncated β-amyloid peptide channels provide an alternative mechanism for Alzheimer’s Disease and Down syndrome

Hyunbum Jang; Fernando Teran Arce; Ricardo Capone; Rushana Azimova; Bruce L. Kagan; Ruth Nussinov; Ratnesh Lal

Full-length amyloid beta peptides (Aβ1–40/42) form neuritic amyloid plaques in Alzheimer’s disease (AD) patients and are implicated in AD pathology. However, recent transgenic animal models cast doubt on their direct role in AD pathology. Nonamyloidogenic truncated amyloid-beta fragments (Aβ11–42 and Aβ17–42) are also found in amyloid plaques of AD and in the preamyloid lesions of Down syndrome, a model system for early-onset AD study. Very little is known about the structure and activity of these smaller peptides, although they could be the primary AD and Down syndrome pathological agents. Using complementary techniques of molecular dynamics simulations, atomic force microscopy, channel conductance measurements, calcium imaging, neuritic degeneration, and cell death assays, we show that nonamyloidogenic Aβ9–42 and Aβ17–42 peptides form ion channels with loosely attached subunits and elicit single-channel conductances. The subunits appear mobile, suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in amyloid precursor protein-deficient cells. The channel mediated calcium uptake induces neurite degeneration in human cortical neurons. Channel conductance, calcium uptake, and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus, truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a unique mechanism of AD and Down syndrome pathologies. The toxicity of nonamyloidogenic peptides via an ion channel mechanism necessitates a reevaluation of the current therapeutic approaches targeting the nonamyloidogenic pathway as avenue for AD treatment.


Journal of Molecular Biology | 2010

β-Barrel Topology of Alzheimer's β-Amyloid Ion Channels

Hyunbum Jang; Fernando Teran Arce; Ricardo Capone; Ratnesh Lal; Ruth Nussinov

Emerging evidence supports the ion channel mechanism for Alzheimers disease pathophysiology wherein small β-amyloid (Aβ) oligomers insert into the cell membrane, forming toxic ion channels and destabilizing the cellular ionic homeostasis. Solid-state NMR-based data of amyloid oligomers in solution indicate that they consist of a double-layered β-sheets where each monomer folds into β-strand-turn-β-strand and the monomers are stacked atop each other. In the membrane, Aβ peptides are proposed to be β-type structures. Experimental structural data available from atomic force microscopy (AFM) imaging of Aβ oligomers in membranes reveal heterogeneous channel morphologies. Previously, we modeled the channels in a non-tilted organization, parallel with the cross-membrane normal. Here, we modeled a β-barrel-like organization. β-Barrels are common in transmembrane toxin pores, typically consisting of a monomeric chain forming a pore, organized in a single-layered β-sheet with antiparallel β-strands and a right-handed twist. Our explicit solvent molecular dynamics simulations of a range of channel sizes and polymorphic turns and comparisons of these with AFM image dimensions support a β-barrel channel organization. Different from the transmembrane β-barrels where the monomers are folded into a circular β-sheet with antiparallel β-strands stabilized by the connecting loops, these Aβ barrels consist of multimeric chains forming double β-sheets with parallel β-strands, where the strands of each monomer are connected by a turn. Although the Aβ barrels adopt the right-handed β-sheet twist, the barrels still break into heterogeneous, loosely attached subunits, in good agreement with AFM images and previous modeling. The subunits appear mobile, allowing unregulated, hence toxic, ion flux.


Molecular Pharmaceutics | 2012

Antimicrobial Properties of Amyloid Peptides

Bruce L. Kagan; Hyunbum Jang; Ricardo Capone; Fernando Teran Arce; Ratnesh Lal; Ruth Nussinov

More than two dozen clinical syndromes known as amyloid diseases are characterized by the buildup of extended insoluble fibrillar deposits in tissues. These amorphous Congo red staining deposits known as amyloids exhibit a characteristic green birefringence and cross-β structure. Substantial evidence implicates oligomeric intermediates of amyloids as toxic species in the pathogenesis of these chronic disease states. A growing body of data has suggested that these toxic species form ion channels in cellular membranes causing disruption of calcium homeostasis, membrane depolarization, energy drainage, and in some cases apoptosis. Amyloid peptide channels exhibit a number of common biological properties including the universal U-shape β-strand-turn-β-strand structure, irreversible and spontaneous insertion into membranes, production of large heterogeneous single-channel conductances, relatively poor ion selectivity, inhibition by Congo red, and channel blockade by zinc. Recent evidence has suggested that increased amounts of amyloids not only are toxic to its host target cells but also possess antimicrobial activity. Furthermore, at least one human antimicrobial peptide, protegrin-1, which kills microbes by a channel-forming mechanism, has been shown to possess the ability to form extended amyloid fibrils very similar to those of classic disease-forming amyloids. In this paper, we will review the reported antimicrobial properties of amyloids and the implications of these discoveries for our understanding of amyloid structure and function.


Journal of Physical Chemistry B | 2012

Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer's β-amyloid peptide: relevance to the ion channel mechanism of AD pathology.

Laura Connelly; Hyunbum Jang; Fernando Teran Arce; Ricardo Capone; Samuel A. Kotler; Bruce L. Kagan; Ruth Nussinov; Ratnesh Lal

Alzheimers disease (AD) is a protein misfolding disease characterized by a buildup of β-amyloid (Aβ) peptide as senile plaques, uncontrolled neurodegeneration, and memory loss. AD pathology is linked to the destabilization of cellular ionic homeostasis and involves Aβ peptide-plasma membrane interactions. In principle, there are two possible ways through which disturbance of the ionic homeostasis can take place: directly, where the Aβ peptide either inserts into the membrane and creates ion-conductive pores or destabilizes the membrane organization, or, indirectly, where the Aβ peptide interacts with existing cell membrane receptors. To distinguish between these two possible types of Aβ-membrane interactions, we took advantage of the biochemical tenet that ligand-receptor interactions are stereospecific; L-amino acid peptides, but not their D-counterparts, bind to cell membrane receptors. However, with respect to the ion channel-mediated mechanism, like L-amino acids, D-amino acid peptides will also form ion channel-like structures. Using atomic force microscopy (AFM), we imaged the structures of both D- and L-enantiomers of the full length Aβ(1-42) when reconstituted in lipid bilayers. AFM imaging shows that both L- and D-Aβ isomers form similar channel-like structures. Molecular dynamics (MD) simulations support the AFM imaged 3D structures. Previously, we have shown that D-Aβ(1-42) channels conduct ions similarly to their L- counterparts. Taken together, our results support the direct mechanism of Aβ ion channel-mediated destabilization of ionic homeostasis rather than the indirect mechanism through Aβ interaction with membrane receptors.


Biophysical Journal | 2009

Misfolded Amyloid Ion Channels Present Mobile β-Sheet Subunits in Contrast to Conventional Ion Channels

Hyunbum Jang; Fernando Teran Arce; Ricardo Capone; Ratnesh Lal; Ruth Nussinov

In Alzheimers disease, calcium permeability through cellular membranes appears to underlie neuronal cell death. It is increasingly accepted that calcium permeability involves toxic ion channels. We modeled Alzheimers disease ion channels of different sizes (12-mer to 36-mer) in the lipid bilayer using molecular dynamics simulations. Our Abeta channels consist of the solid-state NMR-based U-shaped beta-strand-turn-beta-strand motif. In the simulations we obtain ion-permeable channels whose subunit morphologies and shapes are consistent with electron microscopy/atomic force microscopy. In agreement with imaged channels, the simulations indicate that beta-sheet channels break into loosely associated mobile beta-sheet subunits. The preferred channel sizes (16- to 24-mer) are compatible with electron microscopy/atomic force microscopy-derived dimensions. Mobile subunits were also observed for beta-sheet channels formed by cytolytic PG-1 beta-hairpins. The emerging picture from our large-scale simulations is that toxic ion channels formed by beta-sheets spontaneously break into loosely interacting dynamic units that associate and dissociate leading to toxic ionic flux. This sharply contrasts intact conventional gated ion channels that consist of tightly interacting alpha-helices that robustly prevent ion leakage, rather than hydrogen-bonded beta-strands. The simulations suggest why conventional gated channels evolved to consist of interacting alpha-helices rather than hydrogen-bonded beta-strands that tend to break in fluidic bilayers. Nature designs folded channels but not misfolded toxic channels.


Molecular Biology of the Cell | 2010

Abl Tyrosine Kinase Phosphorylates Nonmuscle Myosin Light Chain Kinase to Regulate Endothelial Barrier Function

Steven M. Dudek; Eddie T. Chiang; Sara M. Camp; Yurong Guo; Jing Zhao; Mary E. Brown; Patrick A. Singleton; Lichun Wang; Anjali Desai; Fernando Teran Arce; Ratnesh Lal; Jennifer E. Van Eyk; Syed Z. Imam; Joe G. N. Garcia

This study identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy and examined their influence on nmMLCK function and human lung endothelial barrier regulation. The data indicate an essential role for Abl kinase in vascular barrier regulation via phosphorylation of nmMLCK and the actin-binding protein cortactin.


Nanomedicine: Nanotechnology, Biology and Medicine | 2009

Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: Atomic force microscopy force mapping of pulmonary endothelial monolayer

Anna A. Birukova; Fernando Teran Arce; Nurgul Moldobaeva; Steven M. Dudek; Joe G. N. Garcia; Ratnesh Lal; Konstantin G. Birukov

Actomyosin contraction directly regulates endothelial cell (EC) permeability, but intracellular redistribution of cytoskeletal tension associated with EC permeability is poorly understood. We used atomic force microscopy (AFM), EC permeability assays, and fluorescence microscopy to link barrier regulation, cell remodeling, and cytoskeletal mechanical properties in EC treated with barrier-protective as well as barrier-disruptive agonists. Thrombin, vascular endothelial growth factor, and hydrogen peroxide increased EC permeability, disrupted cell junctions, and induced stress fiber formation. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, hepatocyte growth factor, and iloprost tightened EC barriers, enhanced peripheral actin cytoskeleton and adherens junctions, and abolished thrombin-induced permeability and EC remodeling. AFM force mapping and imaging showed differential distribution of cell stiffness: barrier-disruptive agonists increased stiffness in the central region, and barrier-protective agents decreased stiffness in the center and increased it at the periphery. Attenuation of thrombin-induced permeability correlates well with stiffness changes from the cell center to periphery. These results directly link for the first time the patterns of cell stiffness with specific EC permeability responses.


Journal of Biological Chemistry | 2006

Nanomechanics of Hemichannel Conformations CONNEXIN FLEXIBILITY UNDERLYING CHANNEL OPENING AND CLOSING

Fei Liu; Fernando Teran Arce; Ratnesh Lal

Gap junctional hemichannels mediate cell-extracellular communication. A hemichannel is made of six connexin (Cx) subunits; each connexin has four transmembrane domains, two extracellular loops, and cytoplasmic amino- and carboxyl-terminals (CTs). The extracellular domains are arranged differently at non-junctional and junctional (gap junction) regions, although very little is known about their flexibility and conformational energetics. The cytoplasmic tail differs considerably in the size and amino acid sequence for different connexins and is predicted to be involved in the channel open and closed conformations. For large connexins, such as Cx43, the CT makes large cytoplasmic fuzz visible under electron microscopy. If this CT domain controls channel permeability by physical occlusion of the pore mouth, movement of this portion could open or close the channel. We used atomic force microscopy-based single molecule spectroscopy with antibody-modified atomic force microscopy tips and connexin mimetic peptide modified tips to examine the flexibility of extracellular loop and CT domains and to estimate the energetics of their movements. Antibody to the CT portion closer to the membrane stretches the tail to a shorter length, and the antibody to CT tail stretches the tail to a longer length. The stretch length and the energy required for stretching the various portions of the carboxyl tail support the ball and chain model for hemichannel conformational changes.


Journal of Physical Chemistry B | 2010

Structural Convergence Among Diverse, Toxic β-Sheet Ion Channels

Hyunbum Jang; Fernando Teran Arce; Ricardo Capone; Ratnesh Lal; Ruth Nussinov

Recent studies show that an array of β-sheet peptides, including N-terminally truncated Aβ peptides (Aβ11−42/17−42), K3 (a β2-microglobulin fragment), and protegrin-1 (PG-1) peptides form ion channel-like structures and elicit single channel ion conductance when reconstituted in lipid bilayers and induce cell damage through cell calcium overload. Striking similarities are observed in the dimensions of these toxic channels irrespective of their amino acid sequences. However, the intriguing question of preferred channel sizes is still unresolved. Here, exploiting ssNMR-based, U-shaped, β-strand-turn-β-strand coordinates, we modeled truncated Aβ peptide (p3) channels with different sizes (12- to 36-mer). Molecular dynamics (MD) simulations show that optimal channel sizes of the ion channels presenting toxic ionic flux range between 16- and 24-mer. This observation is in good agreement with channel dimensions imaged by AFM for Aβ9−42, K3 fragment, and PG-1 channels and highlights the bilayer-supported preferred toxic β-channel sizes and organization, regardless of the peptide sequence.

Collaboration


Dive into the Fernando Teran Arce's collaboration.

Top Co-Authors

Avatar

Ratnesh Lal

University of California

View shared research outputs
Top Co-Authors

Avatar

Ruth Nussinov

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Bruce L. Kagan

University of California

View shared research outputs
Top Co-Authors

Avatar

Ricardo Capone

University of California

View shared research outputs
Top Co-Authors

Avatar

Laura Connelly

University of California

View shared research outputs
Top Co-Authors

Avatar

Recep Avci

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Meckes

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge