Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fernando Tuya is active.

Publication


Featured researches published by Fernando Tuya.


Ecology Letters | 2010

Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future

Thomas Wernberg; Mads S. Thomsen; Fernando Tuya; Gary A. Kendrick; Peter A. Staehr; Benjamin D. Toohey

Successful mitigation of negative effects of global warming will depend on understanding the link between physiological and ecological responses of key species. We show that while metabolic adjustment may assist Australasian kelp beds to persist and maintain abundance in warmer waters, it also reduces the physiological responsiveness of kelps to perturbation, and suppresses canopy recovery from disturbances by reducing the ecological performance of kelp recruits. This provides a warning not to rely solely on inventories of distribution and abundance to evaluate ecosystem function. The erosion of resilience is mediated by a shift in adult-juvenile interactions from competitive under cool to facilitative under warm conditions, supporting the prediction that positive interactions may become increasingly important in a warmer future. Kelp beds may remain intact but with a lower threshold for where additional impacts (e.g., extreme storms or reduced water quality) will lead to persistent loss of habitat and ecological function.


Science | 2016

Climate-driven regime shift of a temperate marine ecosystem

Thomas Wernberg; Scott Bennett; Russell C. Babcock; Thibaut de Bettignies; Katherine Cure; Martial Depczynski; Francois Dufois; Jane Fromont; Christopher J. Fulton; Renae Hovey; Euan S. Harvey; Thomas H. Holmes; Gary A. Kendrick; Ben Radford; Julia Santana-Garcon; Benjamin J. Saunders; Dan A. Smale; Mads S. Thomsen; Chenae A. Tuckett; Fernando Tuya; Mathew A. Vanderklift; Shaun K. Wilson

No turning back? Ecosystems over time have endured much disturbance, yet they tend to remain intact, a characteristic we call resilience. Though many systems have been lost and destroyed, for systems that remain physically intact, there is debate as to whether changing temperatures will result in shifts or collapses. Wernburg et al. show that extreme warming of a temperate kelp forest off Australia resulted not only in its collapse, but also in a shift in community composition that brought about an increase in herbivorous tropical fishes that prevent the reestablishment of kelp. Thus, many systems may not be resilient to the rapid climate change that we face. Science, this issue p. 169 Rapid warming tropicalizes a temperate kelp forest. Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.


Integrative and Comparative Biology | 2010

Habitat Cascades: The Conceptual Context and Global Relevance of Facilitation Cascades via Habitat Formation and Modification

Mads S. Thomsen; Thomas Wernberg; Andrew H. Altieri; Fernando Tuya; Dana Gulbransen; Karen J. McGlathery; Marianne Holmer; Brian R. Silliman

The importance of positive interactions is increasingly acknowledged in contemporary ecology. Most research has focused on direct positive effects of one species on another. However, there is recent evidence that indirect positive effects in the form of facilitation cascades can also structure species abundances and biodiversity. Here we conceptualize a specific type of facilitation cascade-the habitat cascade. The habitat cascade is defined as indirect positive effects on focal organisms mediated by successive facilitation in the form of biogenic formation or modification of habitat. Based on a literature review, we demonstrate that habitat cascades are a general phenomenon that enhances species abundance and diversity in forests, salt marshes, seagrass meadows, and seaweed beds. Habitat cascades are characterized by a hierarchy of facilitative interactions in which a basal habitat former (typically a large primary producer, e.g., a tree) creates living space for an intermediate habitat former (e.g., an epiphyte) that in turn creates living space for the focal organisms (e.g., spiders, beetles, and mites). We then present new data on a habitat cascade common to soft-bottom estuaries in which a relatively small invertebrate provides basal habitat for larger intermediate seaweeds that, in turn, generate habitat for focal invertebrates and epiphytes. We propose that indirect positive effects on focal organisms will be strongest when the intermediate habitat former is larger and different in form and function from the basal habitat former. We also discuss how humans create, modify, and destroy habitat cascades via global habitat destruction, climatic change, over-harvesting, pollution, or transfer of invasive species. Finally, we outline future directions for research that will lead to a better understanding of habitat cascades.


Journal of Phycology | 2009

Evidence for impacts of nonindigenous macroalgae: a meta-analysis of experimental field studies.

Mads S. Thomsen; Thomas Wernberg; Fernando Tuya; Brian R. Silliman

Invasions by nonindigenous macroalgal species (NIMS) potentially cause severe impacts on native species. We conducted a meta‐analysis of 18 field‐based manipulative experiments to quantify the direction and magnitude of impacts (Hedges effect size d, hereafter ES). We found significant small‐to‐medium negative effects on “macrophyte abundance” (cover, biomass of native taxa; EScumulative = −0.30) and medium‐to‐large negative effects on “macrophyte assemblages” (richness, diversity, total abundance; EScumulative = −0.70). In contrast, EScumulative were not significant for “macrophyte processes” (growth, mortality; EScumulative = −0.39), “animal abundance” (densities; EScumulative = −0.13), or “animal assemblages” (richness, diversity; EScumulative = 0.75). The nonsignificant effect sizes were characterized by low sample sizes and should be interpreted with caution. Three study‐specific effect sizes were particularly large (<−2.0), showing that, in specific cases, impacts can be highly negative. From a conservation perspective, focus could be on such worst‐case scenarios. Still, the reported EScumulative are likely biased toward larger effects because only the most conspicuous NIMS have been tested and because nonsignificant results are less likely to be published. To better understand the impacts of NIMS, more manipulative experiments are needed, testing more species and under contrasting environmental conditions. Future studies should include procedural control treatments and report the abundance of the NIMS to avoid ambiguous interpretations. In conclusion, current experimental evidence shows that NIMS have, on average, small‐to‐large negative impacts on native plant species and assemblages. It is possible that these effects can result in severe consequences when accumulated over long time periods and large spatial scales.


PLOS ONE | 2012

A meta-analysis of seaweed impacts on seagrasses: Generalities and knowledge gaps

Mads S. Thomsen; Thomas Wernberg; Aschwin H. Engelen; Fernando Tuya; Mat A. Vanderklift; Marianne Holmer; Karen J. McGlathery; Francisco Arenas; Jonne Kotta; Brian R. Silliman

Seagrasses are important habitat-formers and ecosystem engineers that are under threat from bloom-forming seaweeds. These seaweeds have been suggested to outcompete the seagrasses, particularly when facilitated by eutrophication, causing regime shifts where green meadows and clear waters are replaced with unstable sediments, turbid waters, hypoxia, and poor habitat conditions for fishes and invertebrates. Understanding the situations under which seaweeds impact seagrasses on local patch scales can help proactive management and prevent losses at greater scales. Here, we provide a quantitative review of available published manipulative experiments (all conducted at the patch-scale), to test which attributes of seaweeds and seagrasses (e.g., their abundances, sizes, morphology, taxonomy, attachment type, or origin) influence impacts. Weighted and unweighted meta-analyses (Hedges d metric) of 59 experiments showed generally high variability in attribute-impact relationships. Our main significant findings were that (a) abundant seaweeds had stronger negative impacts on seagrasses than sparse seaweeds, (b) unattached and epiphytic seaweeds had stronger impacts than ‘rooted’ seaweeds, and (c) small seagrass species were more susceptible than larger species. Findings (a) and (c) were rather intuitive. It was more surprising that ‘rooted’ seaweeds had comparatively small impacts, particularly given that this category included the infamous invasive Caulerpa species. This result may reflect that seaweed biomass and/or shading and metabolic by-products like anoxia and sulphides could be lower for rooted seaweeds. In conclusion, our results represent simple and robust first-order generalities about seaweed impacts on seagrasses. This review also documented a limited number of primary studies. We therefore identified major knowledge gaps that need to be addressed before general predictive models on seaweed-seagrass interactions can be build, in order to effectively protect seagrass habitats from detrimental competition from seaweeds.


Botanica Marina | 2005

Spatial variation in the structural parameters of Cymodocea nodosa seagrass meadows in the Canary Islands: a multiscaled approach

Carmen Barberá; Fernando Tuya; Arturo Boyra; Pablo Sanchez-Jerez; Ivan Blanch; Ricardo Haroun

Abstract Meadows of the seagrass Cymodocea nodosa (legislated as an endangered species) are the dominant vegetated communities in shallow soft bottoms throughout the Canary Islands (central east Atlantic Ocean). We provide baseline ecological information for this key species for the whole Canarian Archipelago by describing the spatial distribution patterns of structural parameters (percent coverage and shoot density) at different hierarchical spatial scales (from tens of meters to hundreds of kilometers). The coverage values varied between 42.5 and 100% (mean±SE=76.7±2.5%, N=80) and the mean shoot density per location ranged between 164 and 710 shoots m−2 (mean±SE=403.6±17.0 shoots m−2, N=160). We observed a strong variability at small- to medium-spatial scales (locations within islands separated by tens of kilometres and sites hundreds of meters apart within locations) in contrast to a lack of inter-island variability. Additionally, the structural parameters respond differentially to different sets of ecological and physical processes operating at these scales.


Hydrobiologia | 2004

Can one species determine the structure of the benthic community on a temperate rocky reef? The case of the long-spined sea-urchin Diadema antillarum (Echinodermata: Echinoidea) in the eastern Atlantic

Fernando Tuya; Arturo Boyra; Pablo Sanchez-Jerez; Carmen Barberá; Ricardo Haroun

We sampled 36 coastal rocky reefs throughout the overall Canarian Archipelago and consider (1) the daily macroalgal consumption of the long-spined sea urchin Diadema antillarum and (2) the daily net production of macroalgae along temperate rocky-substrates, to provide evidence that Diadema antillarum plays an important role in the structure of the shallow benthic environment of the eastern Atlantic. D. antillarum was found to be the main key-herbivore species, as it controls by its own the algal assemblages, with negligible contribution of other grazing species.


Journal of Fish Biology | 2011

The relative influence of local to regional drivers of variation in reef fishes

Fernando Tuya; Thomas Wernberg; Mads S. Thomsen

In this study, fishes and habitat attributes were quantified, four times over 1 year, on three reefs within four regions encompassing a c. 6° latitudinal gradient across south-western Australia. The variability observed was partitioned at these spatio-temporal scales in relation to reef fish variables and the influence of environmental drivers quantified at local scales, i.e. at the scale of reefs (the number of small and large topographic elements, the cover of kelp, fucalean and red algae, depth and wave exposure) and at the scale of regions (mean and maximum nutrient concentrations and mean seawater temperature) with regard to the total abundance, species density, species diversity and the multivariate structure of reef fishes. Variation in reef fish species density and diversity was significant at the regional scale, whereas variation in the total abundance and assemblage structure of fishes was also significant at local scales. Spatial variation was greater than temporal variation in all cases. A systematic and gradual species turnover in assemblage structure was observed between adjacent regions across the latitudinal gradient. The cover of red algae within larger patches of brown macroalgae (a biological attribute of the reef) and the number of large topographic elements (a structural attribute of the reef) were correlated with variation observed at local scales, while seawater temperature correlated with variation at the scale of regions. In conclusion, conservation efforts on reef fishes need to incorporate processes operating at regional scales with processes that shape local reef fish communities at local scales.


Hydrobiologia | 2011

Patterns of abundance and assemblage structure of epifauna inhabiting two morphologically different kelp holdfasts

Fernando Tuya; Kim Larsen; Verena Platt

The mobile fauna associated with two sympatric kelp species with different holdfast morphology (Saccorhiza polyschides and Laminaria hyperborea) was compared to test for differences in the assemblage structure of holdfast-associated mobile epifauna. A total of 24,140 epifaunal individuals were counted from 30 holdfasts of each kelp species. Overall epifaunal abundances exceeded faunal abundances previously reported from holdfasts of other kelps. Three taxonomic groups, Amphipoda, Mollusca, and Polychaeta, accounted for ca. 85% of all individuals. Total abundances increased with the amount of habitat available, quantified either as the volume or the area provided by the holdfasts. The multivariate structure of the epifaunal assemblage did not differ between holdfasts of the two kelp species. However, epifaunal assemblages responded differentially to the habitat attributes provided by each type of kelp holdfast: multivariate variation in the assemblage structure of epifauna was mostly explained by holdfast area and volume for L. hyperborea, and by the surface-to-volume ratio for S. polyschides holdfasts. Therefore, the physical attributes of biogenic habitats, here kelp holdfasts that better predict patterns in the assemblage structure of associated fauna can differ according to their different physical morphology, even though the overall assemblage structure of associated fauna was similar.


European Journal of Phycology | 2009

Phytogeography of Lusitanian Macaronesia: biogeographic affinities in species richness and assemblage composition

Fernando Tuya; Ricardo Haroun

Analysis of biogeographic affinities is a key tool to establish and improve the resolution of hierarchical biogeographic systems. We describe patterns of species richness of the marine macroalgal flora across Lusitanian Macaronesia (Azores, Madeira, the Salvage Islands and the Canary Islands), and test (i) whether such differences are related to differences in proximity to the nearest continental shore and size among islands. We also explore biogeographic affinities in the composition of macroalgal assemblages (= presence/absence of each taxon in multivariate datasets) to determine (ii) whether each archipelago is a biogeographic unit within this ecoregion and (iii) whether patterns in assemblage composition are related to proximity (i.e. distances) among islands. Presence/absence matrices were created to test and visualize multivariate affinities among archipelagos. A total of 872 taxa were compiled. Species richness peaked at the Canary Islands and decreased towards the Azores; the pattern matched a progressive increase in distance from the nearest continental shores, matching the classical island biogeography theory. Intra-archipelago differences in species richness were largely related to variations in island size. Biogeographic similarities among archipelagos were hierarchically structured. Madeira and the Salvage Islands constituted one biogeographic unit. Floras from the Azores, Madeira and the Salvage Islands were barely separable from each other, but were different from those at the Canary Islands. Such biogeographic similarities among islands were negatively correlated with the geographical separation (i.e. distances) among them. Proximity to nearby continental shores, in conjunction with large- and meso-scale oceanographic patterns, seems to interact to create patterns in richness and composition of algal assemblages across Lusitanian Macaronesia.

Collaboration


Dive into the Fernando Tuya's collaboration.

Top Co-Authors

Avatar

Ricardo Haroun

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arturo Boyra

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iacopo Bertocci

Stazione Zoologica Anton Dohrn

View shared research outputs
Researchain Logo
Decentralizing Knowledge