Ferran Casals
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ferran Casals.
Nature Genetics | 2011
Donald F. Conrad; Jonathan E. M. Keebler; Mark A. DePristo; Sarah J. Lindsay; Yujun Zhang; Ferran Casals; Youssef Idaghdour; Chris Hartl; Carlos Torroja; Kiran Garimella; Martine Zilversmit; Reed A. Cartwright; Guy A. Rouleau; Mark J. Daly; Eric A. Stone
J.B.S. Haldane proposed in 1947 that the male germline may be more mutagenic than the female germline. Diverse studies have supported Haldanes contention of a higher average mutation rate in the male germline in a variety of mammals, including humans. Here we present, to our knowledge, the first direct comparative analysis of male and female germline mutation rates from the complete genome sequences of two parent-offspring trios. Through extensive validation, we identified 49 and 35 germline de novo mutations (DNMs) in two trio offspring, as well as 1,586 non-germline DNMs arising either somatically or in the cell lines from which the DNA was derived. Most strikingly, in one family, we observed that 92% of germline DNMs were from the paternal germline, whereas, in contrast, in the other family, 64% of DNMs were from the maternal germline. These observations suggest considerable variation in mutation rates within and between families.
American Journal of Human Genetics | 2010
Julie Gauthier; Rachel A. Myers; Ferran Casals; Fadi F. Hamdan; Alexander R. Griffing; Mélanie Côté; Edouard Henrion; Dan Spiegelman; Julien Tarabeux; Amélie Piton; Yan Yang; Adam R. Boyko; Carlos Bustamante; Lan Xiong; Judith L. Rapoport; Anjene Addington; J. Lynn E. DeLisi; Marie-Odile Krebs; Ridha Joober; Bruno Millet; Eric Fombonne; Laurent Mottron; Martine Zilversmit; Jon Keebler; Hussein Daoud; Claude Marineau; Marie-Hélène Roy-Gagnon; Marie-Pierre Dubé; Adam Eyre-Walker; Pierre Drapeau
The role of de novo mutations (DNMs) in common diseases remains largely unknown. Nonetheless, the rate of de novo deleterious mutations and the strength of selection against de novo mutations are critical to understanding the genetic architecture of a disease. Discovery of high-impact DNMs requires substantial high-resolution interrogation of partial or complete genomes of families via resequencing. We hypothesized that deleterious DNMs may play a role in cases of autism spectrum disorders (ASD) and schizophrenia (SCZ), two etiologically heterogeneous disorders with significantly reduced reproductive fitness. We present a direct measure of the de novo mutation rate (μ) and selective constraints from DNMs estimated from a deep resequencing data set generated from a large cohort of ASD and SCZ cases (n = 285) and population control individuals (n = 285) with available parental DNA. A survey of ∼430 Mb of DNA from 401 synapse-expressed genes across all cases and 25 Mb of DNA in controls found 28 candidate DNMs, 13 of which were cell line artifacts. Our calculated direct neutral mutation rate (1.36 × 10(-8)) is similar to previous indirect estimates, but we observed a significant excess of potentially deleterious DNMs in ASD and SCZ individuals. Our results emphasize the importance of DNMs as genetic mechanisms in ASD and SCZ and the limitations of using DNA from archived cell lines to identify functional variants.
Molecular Biology and Evolution | 2009
Anna Ferrer-Admetlla; Martin Sikora; Hafid Laayouni; Anna Esteve; Francis Roubinet; Antoine Blancher; Francesc Calafell; Jaume Bertranpetit; Ferran Casals
Because pathogens are powerful selective agents, host-cell surface molecules used by pathogens as identification signals can reveal the signature of selection. Most of them are oligosaccharides, synthesized by glycosyltransferases. One known example is balancing selection shaping ABO evolution as a consequence of both, A and B antigens being recognized as receptors by some pathogens, and anti-A and/or anti-B natural antibodies produced by hosts conferring protection against the numerous infectious agents expressing A and B motifs. These antigens can also be found in tissues other than blood if there is activity of another enzyme, FUT2, a fucosyltransferase responsible for ABO biosynthesis in body fluids. Homozygotes for null variants at this locus present the nonsecretor phenotype (se), because they cannot express ABO antigens in secretions. Multiple independent mutations have been shown to be responsible for the nonsecretor phenotype, which is coexisting with the secretor phenotype in most populations. In this study, we have resequenced the coding region of FUT2 in 732 individuals from 39 worldwide human populations. We report a complex pattern of natural selection acting on the gene. Although frequencies of secretor and nonsecretor phenotypes are similar in different populations, the point mutations at the base of the phenotypes are different, with some variants showing a long history of balancing selection among Eurasian and African populations, and one recent variant showing a fast spread in East Asia, likely due to positive selection. Thus, a convergent phenotype composition has been achieved through different mutations with different evolutionary histories.
Journal of Medical Genetics | 2013
Mark E. Samuels; Jacek Majewski; Najmeh Alirezaie; Isabel Fernandez; Ferran Casals; Natalie Patey; Hélène Decaluwe; Isabelle Gosselin; Elie Haddad; Alan Hodgkinson; Youssef Idaghdour; Valérie Marchand; Jacques L. Michaud; M.-A. Rodrigue; Sylvie Desjardins; Stéphane Dubois; Françoise Le Deist; Vincent Raymond; Bruno Maranda
Background Congenital multiple intestinal atresia (MIA) is a severe, fatal neonatal disorder, involving the occurrence of obstructions in the small and large intestines ultimately leading to organ failure. Surgical interventions are palliative but do not provide long-term survival. Severe immunodeficiency may be associated with the phenotype. A genetic basis for MIA is likely. We had previously ascertained a cohort of patients of French-Canadian origin, most of whom were deceased as infants or in utero. The goal of the study was to identify the molecular basis for the disease in the patients of this cohort. Methods We performed whole exome sequencing on samples from five patients of four families. Validation of mutations and familial segregation was performed using standard Sanger sequencing in these and three additional families with deceased cases. Exon skipping was assessed by reverse transcription-PCR and Sanger sequencing. Results Five patients from four different families were each homozygous for a four base intronic deletion in the gene TTC7A, immediately adjacent to a consensus GT splice donor site. The deletion was demonstrated to have deleterious effects on splicing causing the skipping of the attendant upstream coding exon, thereby leading to a predicted severe protein truncation. Parents were heterozygous carriers of the deletion in these families and in two additional families segregating affected cases. In a seventh family, an affected case was compound heterozygous for the same 4bp deletion and a second missense mutation p.L823P, also predicted as pathogenic. No other sequenced genes possessed deleterious variants explanatory for all patients in the cohort. Neither mutation was seen in a large set of control chromosomes. Conclusions Based on our genetic results, TTC7A is the likely causal gene for MIA.
PLOS Genetics | 2011
Rachel A. Myers; Ferran Casals; Julie Gauthier; Fadi F. Hamdan; Jon Keebler; Adam R. Boyko; Carlos Bustamante; Amélie Piton; Dan Spiegelman; Edouard Henrion; Martine Zilversmit; Julie Hussin; Jacklyn Quinlan; Yan Yang; Ronald G. Lafrenière; Alexander R. Griffing; Eric A. Stone; Guy A. Rouleau
Deep resequencing of functional regions in human genomes is key to identifying potentially causal rare variants for complex disorders. Here, we present the results from a large-sample resequencing (nu200a=u200a285 patients) study of candidate genes coupled with population genetics and statistical methods to identify rare variants associated with Autism Spectrum Disorder and Schizophrenia. Three genes, MAP1A, GRIN2B, and CACNA1F, were consistently identified by different methods as having significant excess of rare missense mutations in either one or both disease cohorts. In a broader context, we also found that the overall site frequency spectrum of variation in these cases is best explained by population models of both selection and complex demography rather than neutral models or models accounting for complex demography alone. Mutations in the three disease-associated genes explained much of the difference in the overall site frequency spectrum among the cases versus controls. This study demonstrates that genes associated with complex disorders can be mapped using resequencing and analytical methods with sample sizes far smaller than those required by genome-wide association studies. Additionally, our findings support the hypothesis that rare mutations account for a proportion of the phenotypic variance of these complex disorders.
PLOS Genetics | 2013
Ferran Casals; Alan Hodgkinson; Julie Hussin; Youssef Idaghdour; Vanessa Bruat; Thibault de Maillard; Jean-Cristophe Grenier; Elias Gbeha; Fadi F. Hamdan; Simon Girard; Jean François Spinella; Mathieu Larivière; Virginie Saillour; Jasmine Healy; Isabel Fernandez; Daniel Sinnett; Jacques L. Michaud; Guy A. Rouleau; Elie Haddad; Françoise Le Deist
Whole-exome or gene targeted resequencing in hundreds to thousands of individuals has shown that the majority of genetic variants are at low frequency in human populations. Rare variants are enriched for functional mutations and are expected to explain an important fraction of the genetic etiology of human disease, therefore having a potential medical interest. In this work, we analyze the whole-exome sequences of French-Canadian individuals, a founder population with a unique demographic history that includes an original population bottleneck less than 20 generations ago, followed by a demographic explosion, and the whole exomes of French individuals sampled from France. We show that in less than 20 generations of genetic isolation from the French population, the genetic pool of French-Canadians shows reduced levels of diversity, higher homozygosity, and an excess of rare variants with low variant sharing with Europeans. Furthermore, the French-Canadian population contains a larger proportion of putatively damaging functional variants, which could partially explain the increased incidence of genetic disease in the province. Our results highlight the impact of population demography on genetic fitness and the contribution of rare variants to the human genetic variation landscape, emphasizing the need for deep cataloguing of genetic variants by resequencing worldwide human populations in order to truly assess disease risk.
Journal of Neuroimmunology | 2012
Ferran Casals; Youssef Idaghdour; Julie Hussin
The advent of next generation sequencing technologies has opened new possibilities in the analysis of human disease. In this review we present the main next-generation sequencing technologies, with their major contributions and possible applications to the study of the genetic etiology of complex diseases.
BMC Evolutionary Biology | 2011
Ferran Casals; Martin Sikora; Hafid Laayouni; Ludovica Montanucci; Aura Muntasell; Ross Lazarus; Francesc Calafell; Mihai G. Netea; Jaume Bertranpetit
BackgroundPathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection.ResultsHere, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection.ConclusionsWe found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.
BMC Genomics | 2011
Urko M. Marigorta; Oscar Lao; Ferran Casals; Francesc Calafell; Carlos Morcillo-Suarez; Rui Faria; Elena Bosch; François Serra; Jaume Bertranpetit; Hernán Dopazo; Arcadi Navarro
BackgroundSearching for associations between genetic variants and complex diseases has been a very active area of research for over two decades. More than 51,000 potential associations have been studied and published, a figure that keeps increasing, especially with the recent explosion of array-based Genome-Wide Association Studies. Even if the number of true associations described so far is high, many of the putative risk variants detected so far have failed to be consistently replicated and are widely considered false positives. Here, we focus on the world-wide patterns of replicability of published association studies.ResultsWe report three main findings. First, contrary to previous results, genes associated to complex diseases present lower degrees of genetic differentiation among human populations than average genome-wide levels. Second, also contrary to previous results, the differences in replicability of disease associated-loci between Europeans and East Asians are highly correlated with genetic differentiation between these populations. Finally, highly replicated genes present increased levels of high-frequency derived alleles in European and Asian populations when compared to African populations.ConclusionsOur findings highlight the heterogeneous nature of the genetic etiology of complex disease, confirm the importance of the recent evolutionary history of our species in current patterns of disease susceptibility and could cast doubts on the status as false positives of some associations that have failed to replicate across populations.
Molecular Biology and Evolution | 2009
Andres Moreno-Estrada; Kun Tang; Martin Sikora; Tomas Marques-Bonet; Ferran Casals; Arcadi Navarro; Francesc Calafell; Jaume Bertranpetit; Mark Stoneking; Elena Bosch
Different signatures of natural selection persist over varying time scales in our genome, revealing possible episodes of adaptative evolution during human history. Here, we identify genes showing signatures of ancestral positive selection in the human lineage and investigate whether some of those genes have been evolving adaptatively in extant human populations. Specifically, we compared more than 11,000 human genes with their orthologs in chimpanzee, mouse, rat, and dog and applied a branch-site likelihood method to test for positive selection on the human lineage. Among the significant cases, a robust set of 11 genes was then further explored for signatures of recent positive selection using single nucleotide polymorphism (SNP) data. We genotyped 223 SNPs in 39 worldwide populations from the HGDP-CEPH diversity panel and supplemented this information with available genotypes for up to 4,814 SNPs distributed along 2 Mb centered on each gene. After exploring the allele frequency spectrum, population differentiation and the maintenance of long unbroken haplotypes, we found signals of recent adaptative phenomena in only one of the 11 candidate gene regions. However, the signal of recent selection in this region may come from a different, neighboring gene (CD5) rather than from the candidate gene itself (VPS37C). For this set of positively selected genes in the human lineage, we find no indication that these genes maintained their rapid evolutionary pace among human populations. Based on these data, it therefore appears that adaptation for human-specific and for population-specific traits may have involved different genes.