Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ferran Navarro is active.

Publication


Featured researches published by Ferran Navarro.


Clinical Microbiology and Infection | 2010

Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues

Vivi Miriagou; Giuseppe Cornaglia; M. Edelstein; Irene Galani; Christian G. Giske; Marek Gniadkowski; E. Malamou-Lada; Luis Martínez-Martínez; Ferran Navarro; Patrice Nordmann; Luísa Peixe; Spyros Pournaras; G.M. Rossolini; Athanassios Tsakris; Alkiviadis C. Vatopoulos; Rafael Cantón

Acquired carbapenemases are emerging resistance determinants in Gram-negative pathogens, including Enterobacteriaceae, Pseudomonas aeruginosa and other Gram-negative non-fermenters. A consistent number of acquired carbapenemases have been identified during the past few years, belonging to either molecular class B (metallo-beta-lactamases) or molecular classes A and D (serine carbapenemases), and genes encoding these enzymes are associated with mobile genetic elements that allow their rapid dissemination in the clinical setting. Therefore, detection and surveillance of carbapenemase-producing organisms have become matters of major importance for the selection of appropriate therapeutic schemes and the implementation of infection control measures. As carbapenemase production cannot be simply inferred from the resistance profile, criteria must be established for which isolates should be suspected and screened for carbapenemase production, and for which tests (phenotypic and/or genotypic) should be adopted for confirmation of the resistance mechanism. Moreover, strategies should be devised for surveillance of carbapenemase producers in order to enable the implementation of effective surveillance programmes. The above issues are addressed in this article, as a follow-up to an expert meeting on acquired carbapenemases that was recently organized by the ESCMID Study Group for Antibiotic Resistance Surveillance.


Applied and Environmental Microbiology | 2010

Isolation and Characterization of Potentially Pathogenic Antimicrobial-Resistant Escherichia coli Strains from Chicken and Pig Farms in Spain

Pilar Cortés; Vanessa Blanc; Azucena Mora; Ghizlane Dahbi; Jesús E. Blanco; Miguel Blanco; Cecilia López; Antonia Andreu; Ferran Navarro; María del Pilar León-Castro Alonso; Germán Bou; Jorge Blanco; Montserrat Llagostera

ABSTRACT To ascertain whether on animal farms there reside extended-spectrum β-lactamase (ESBL) and plasmidic class C β-lactamase-producing Escherichia coli isolates potentially pathogenic for humans, phylogenetic analyses, pulsed-field gel electrophoresis (PFGE) typing, serotyping, and virulence genotyping were performed for 86 isolates from poultry (57 isolates) and pig (29 isolates) farms. E. coli isolates from poultry farms carried genes encoding enzymes of the CTX-M-9 group as well as CMY-2, whereas those from pig farms mainly carried genes encoding CTX-M-1 enzymes. Poultry and pig isolates differed significantly in their phylogenetic group assignments, with phylogroup A predominating in pig isolates and phylogroup D predominating in avian isolates. Among the 86 farm isolates, 23 (26.7%) carried two or more virulence genes typical of extraintestinal pathogenic E. coli (ExPEC). Of these, 20 were isolated from poultry farms and only 3 from pig farms. Ten of the 23 isolates belonged to the classic human ExPEC serotypes O2:H6, O2:HNM, O2:H7, O15:H1, and O25:H4. Despite the high diversity of serotypes and pulsotypes detected among the 86 farm isolates, 13 PFGE clusters were identified. Four of these clusters contained isolates with two or more virulence genes, and two clusters exhibited the classic human ExPEC serotypes O2:HNM (ST10) and O2:H6 (ST115). Although O2:HNM and O2:H6 isolates of human and animal origins differed with respect to their virulence genes and PFGE pulsotypes, the O2:HNM isolates from pigs showed the same sequence type (ST10) as those from humans. The single avian O15:H1 isolate was compared with human clinical isolates of this serotype. Although all were found to belong to phylogroup D and shared the same virulence gene profile, they differed in their sequence types (ST362-avian and ST393-human) and PFGE pulsotypes. Noteworthy was the detection, for the first time, in poultry farms of the clonal groups O25b:H4-ST131-B2, producing CTX-M-9, and O25a-ST648-D, producing CTX-M-32. The virulence genes and PFGE profiles of these two groups were very similar to those of clinical human isolates. While further studies are required to determine the true zoonotic potential of these clonal groups, our results emphasize the zoonotic risk posed especially by poultry farms, but also by pig farms, as reservoirs of ESBL- and CMY-2-encoding E. coli.


Antimicrobial Agents and Chemotherapy | 2007

Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa Isolates from Spanish Hospitals

O. Gutiérrez; Carlos Juan; Emilia Cercenado; Ferran Navarro; Emilio Bouza; Pere Coll; José Luis Pérez; Antonio Oliver

ABSTRACT All (236) Pseudomonas aeruginosa isolates resistant to imipenem and/or meropenem collected during a multicenter (127-hospital) study in Spain were analyzed. Carbapenem-resistant isolates were found to be more frequently resistant to all β-lactams and non-β-lactam antibiotics than carbapenem-susceptible isolates (P < 0.001), and up to 46% of the carbapenem-resistant isolates met the criteria used to define multidrug resistance (MDR). Pulsed-field gel electrophoresis revealed remarkable clonal diversity (165 different clones were identified), and with few exceptions, the levels of intra- and interhospital dissemination of clones were found to be low. Carbapenem resistance was driven mainly by the mutational inactivation of OprD, accompanied or not by the hyperexpression of AmpC or MexAB-OprM. Class B carbapenemases (metallo-β-lactamases [MBLs]) were detected in a single isolate, although interestingly, this isolate belonged to one of the few epidemic clones documented. The MBL-encoding gene (blaVIM-2), along with the aminoglycoside resistance determinants, was transferred to strain PAO1 by electroporation, demonstrating its plasmid location. The class 1 integron harboring blaVIM-2 was characterized as well, and two interesting features were revealed: intI1 was found to be disrupted by a 1.1-kb insertion sequence, and a previously undescribed aminoglycoside acetyltransferase-encoding gene [designated aac(6′)-32] preceded blaVIM-2. AAC(6′)-32 showed 80% identity to AAC(6′)-Ib′ and the recently described AAC(6′)-31, and when aac(6′)-32 was cloned into Escherichia coli, it conferred resistance to tobramycin and reduced susceptibility to gentamicin and amikacin. Despite the currently low prevalence of epidemic clones with MDR, active surveillance is needed to detect and prevent the dissemination of these clones, particularly those producing integron- and plasmid-encoded MBLs, given their additional capacity for the intra- and interspecies spread of MDR.


Antimicrobial Agents and Chemotherapy | 1994

Analysis of genes encoding D-alanine-D-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens.

Ferran Navarro; P Courvalin

Using degenerate oligonucleotides complementary to sequences encoding conserved amino acid motifs in D-alanine-D-alanine (Ddl) ligases, we have amplified ca. 600-bp fragments from Enterococcus casseliflavus ATCC 25788 and Enterococcus flavescens CCM439. Sequence analysis of the amplification products indicated that each strain possessed two genes, ddlE. cass. and vanC-2, and ddlE. flav. and vanC-3, respectively, encoding Ddl-related enzymes. The fragments internal to the vanC genes were 98.3% identical. The vanC-2 gene was cloned into Escherichia coli and sequenced. Extensive similarity (66% nucleotide identity) was detected between this gene and vanC-1 from Enterococcus gallinarum (S. Dutka-Malen, C. Molinas, M. Arthur, and P. Courvalin, Gene 112:53-58, 1992), suggesting that the vanC genes are required for intrinsic low-level resistance to vancomycin. The partial deduced amino acid sequences of ddlE. cass. and ddlE. flav. were identical and closely related to that of the Ddl ligase of Enterococcus faecalis (79% identity). In Southern hybridization experiments, only DNA from E. casseliflavus and E. flavescens hybridized to probes internal to the vanC-2 and ddlE. cass. genes.


International Journal of Antimicrobial Agents | 2009

Extended-spectrum β-lactamase-producing Escherichia coli in Spain belong to a large variety of multilocus sequence typing types, including ST10 complex/A, ST23 complex/A and ST131/B2

Jesús Oteo; Karol Diestra; Carlos Juan; Verónica Bautista; Ângela Novais; María Pérez-Vázquez; Bartolomé Moyá; Elisenda Miró; Teresa M. Coque; Antonio Oliver; Rafael Cantón; Ferran Navarro; José Campos

In this study, we investigated the population structure of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in Spain and determined possible associations between specific multilocus sequence typing (MLST) types and ESBL types. Ninety-two ESBL-producing E. coli isolates from 11 Spanish hospitals were studied. The predominant ESBLs in this collection were CTX-M-14 (45.7%), SHV-12 (21.7%) and CTX-M-9 (20.6%). Phylogenetic groups and MLST types were studied. Thirty-seven isolates (40.2%) belonged to phylogroup A, 26 (28.3%) to group B1, 13 (14.1%) to group B2 and 16 (17.4%) to group D. Fifty-six sequence types (STs) were identified, but ST131 (eight isolates) and ST167 (five isolates) were the most prevalent. The most common ST complexes were ST10 (13 isolates; 14.3%) and ST23 (10 isolates; 11%). Escherichia coli ST131 carried six different ESBLs (CTX-M-1, CTX-M-9, CTX-M-10, CTX-M-14, CTX-M-15 and SHV-12), E. coli ST10 complex carried five ESBLs and E. coli ST23 complex carried four ESBLs. A great diversity of MLST types was observed among Spanish ESBL-producing E. coli isolates.


Antimicrobial Agents and Chemotherapy | 2000

Antibiotic resistance trends in enteropathogenic bacteria isolated in 1985-1987 and 1995-1998 in Barcelona.

G. Prats; Beatriz Mirelis; Teresa Llovet; Carmen Muñoz; Elisenda Miró; Ferran Navarro

ABSTRACT Trends in resistance to antimicrobial agents used for therapy have been evaluated with 3,797 enteropathogenic bacteria,Campylobacter, Salmonella,Shigella, and Yersinia, between 1985–1987 and 1995–1998. The greater increase in the rate of resistance was observed in Campylobacter jejuni for quinolones (from 1 to 82%) and tetracycline (from 23 to 72%) and in gastroenteric salmonellae for ampicillin (from 8 to 44%), chloramphenicol (from 1.7 to 26%), and trimethoprim-sulfamethoxazole and nalidixic acid (from less than 0.5 to 11%). Multidrug resistance was detected in several Salmonella serotypes. In the 1995–1998 period, 76% of Shigella strains were resistant to trimethoprim-sulfamethoxazole, 43% were resistant to ampicillin, and 39% were resistant to chloramphenicol. Seventy-two percent ofYersinia enterocolitica O3 strains were resistant to streptomycin, 45% were resistant to sulfonamides, 28% were resistant to trimethoprim-sulfamethoxazole, and 20% were resistant to chloramphenicol.


Antimicrobial Agents and Chemotherapy | 2000

Cloning and Sequence of the Gene Encoding a Novel Cefotaxime-Hydrolyzing β-Lactamase (CTX-M-9) from Escherichia coli in Spain

Montserrat Sabaté; Raül Tarragó; Ferran Navarro; Elisenda Miró; Clara Vergés; Jordi Barbé; G. Prats

ABSTRACT A new CTX-M-type β-lactamase (CTX-M-9) has been cloned from a clinical cefotaxime-resistant Escherichia coli strain. Despite the close identity that exists between the CTX-M-9 and Toho-2 β-lactamases (88%), the 35 amino acids located between residues Ala-185 and Ala-219 are totally different in both enzymes. Outside of this region there are only six amino acids substitutions between both proteins.


Antimicrobial Agents and Chemotherapy | 2002

Novel Complex sul1-Type Integron in Escherichia coli Carrying blaCTX-M-9

Montserrat Sabaté; Ferran Navarro; Elisenda Miró; Susana Campoy; Beatriz Mirelis; Jordi Barbé; Guillem Prats

ABSTRACT For the present report, a novel complex class 1 integron, In60, was characterized. Part of this integron includes the blaCTX-M-9 gene and its downstream nucleotide sequence, which shares 81% and 78% nucleotide identity with those of kluA-1 β-lactamase and orf3 of K. ascorbata, respectively. Furthermore, a new insertion sequence, IS3000, has been found in In60. PCR analysis indicates that integron In60 is present in 33 of 34 nonclonal enterobacterial isolates carrying the putative β-lactamase CTX-M-9.


Emerging Infectious Diseases | 2004

Bacteriophages and Diffusion of β-lactamase Genes

Maite Muniesa; Aurora Leal García; Elisenda Miró; Beatriz Mirelis; Guillem Prats; Juan Jofre; Ferran Navarro

We evaluated the presence of various β-lactamase genes within the bacteriophages in sewage. Results showed the occurrence of phage particles carrying sequences of blaOXA-2, blaPSE-1 or blaPSE-4 and blaPSE-type genes. Phages may contribute to the spread of some β-lactamase genes.


Antimicrobial Agents and Chemotherapy | 2015

Prospective Multicenter Study of Carbapenemase-Producing Enterobacteriaceae from 83 Hospitals in Spain Reveals High In Vitro Susceptibility to Colistin and Meropenem

Jesús Oteo; Adriana Ortega; Rosa Bartolomé; Germán Bou; Carmen Conejo; Marta Fernández-Martínez; Juan José González-López; Laura Martínez-García; Luis Martínez-Martínez; María Merino; Elisenda Miró; Marta Mora; Ferran Navarro; Antonio Oliver; Álvaro Pascual; Jesús Rodríguez-Baño; Guillermo Ruiz-Carrascoso; Patricia Ruiz-Garbajosa; Laura Zamorano; Verónica Bautista; María Pérez-Vázquez; José Campos

ABSTRACT The aim of this study was to determine the impact of carbapenemase-producing Enterobacteriaceae (CPE) in Spain in 2013 by describing the prevalence, dissemination, and geographic distribution of CPE clones, and their population structure and antibiotic susceptibility. From February 2013 to May 2013, 83 hospitals (about 40,000 hospital beds) prospectively collected nonduplicate Enterobacteriaceae using the screening cutoff recommended by EUCAST. Carbapenemase characterization was performed by phenotypic methods and confirmed by PCR and sequencing. Multilocus sequencing types (MLST) were determined for Klebsiella pneumoniae and Escherichia coli. A total of 702 Enterobacteriaceae isolates met the inclusion criteria; 379 (54%) were CPE. OXA-48 (71.5%) and VIM-1 (25.3%) were the most frequent carbapenemases, and K. pneumoniae (74.4%), Enterobacter cloacae (10.3%), and E. coli (8.4%) were the species most affected. Susceptibility to colistin, amikacin, and meropenem was 95.5%, 81.3%, and 74.7%, respectively. The most prevalent sequence types (STs) were ST11 and ST405 for K. pneumoniae and ST131 for E. coli. Forty-five (54.1%) of the hospitals had at least one CPE case. For K. pneumoniae, ST11/OXA-48, ST15/OXA-48, ST405/OXA-48, and ST11/VIM-1 were detected in two or more Spanish provinces. ST11 isolates carried four carbapenemases (VIM-1, OXA-48, KPC-2, and OXA-245), but ST405 isolates carried OXA-48 only. A wide interregional spread of CPE in Spain was observed, mainly due to a few successful clones of OXA-48-producing K. pneumoniae (e.g., ST11 and ST405). The dissemination of OXA-48-producing E. coli is a new finding of public health concern. According to the susceptibilities determined in vitro, most of the CPE (94.5%) had three or more options for antibiotic treatment.

Collaboration


Dive into the Ferran Navarro's collaboration.

Top Co-Authors

Avatar

Elisenda Miró

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Beatriz Mirelis

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Pere Coll

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

G. Prats

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Antonio Oliver

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Jesús Oteo

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Juan José González-López

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Guillem Prats

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Germán Bou

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Álvaro Pascual

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge