Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fikret Mamedov is active.

Publication


Featured researches published by Fikret Mamedov.


Journal of Biological Chemistry | 2006

Dimeric and monomeric organization of photosystem II - Distribution of five distinct complexes in the different domains of the thylakoid membrane

Ravi Danielsson; Marjaana Suorsa; Virpi Paakkarinen; Per-Åke Albertsson; Stenbjörn Styring; Eva-Mari Aro; Fikret Mamedov

The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b559 complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.


Biochimica et Biophysica Acta | 2008

Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants

Mikko Tikkanen; Markus Nurmi; Marjaana Suorsa; Ravi Danielsson; Fikret Mamedov; Stenbjoern Styring; Eva-Mari Aro

Phosphorylation-dependent movement of the light-harvesting complex II (LHCII) between photosystem II (PSII) and photosystem I (PSI) takes place in order to balance the function of the two photosystems. Traditionally, the phosphorylatable fraction of LHCII has been considered as the functional unit of this dynamic regulation. Here, a mechanical fractionation of the thylakoid membrane of Spinacia oleracea was performed from leaves both in the phosphorylated state (low light, LL) and in the dephosphorylated state (dark, D) in order to compare the phosphorylation-dependent protein movements with the excitation changes occurring in the two photosystems upon LHCII phosphorylation. Despite the fact that several LHCII proteins migrate to stroma lamellae when LHCII is phosphorylated, no increase occurs in the 77 K fluorescence emitted from PSI in this membrane fraction. On the contrary, such an increase in fluorescence occurs in the grana margin fraction, and the functionally important mobile unit is the PSI-LHCI complex. A new model for LHCII phosphorylation driven regulation of relative PSII/PSI excitation thus emphasises an increase in PSI absorption cross-section occurring in grana margins upon LHCII phosphorylation and resulting from the movement of PSI-LHCI complexes from stroma lamellae and subsequent co-operation with the P-LHCII antenna from the grana. The grana margins probably give a flexibility for regulation of linear and cyclic electron flow in plant chloroplasts.


Journal of Biological Chemistry | 2006

PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II.

Marjaana Suorsa; Sari Sirpiö; Yagut Allahverdiyeva; Virpi Paakkarinen; Fikret Mamedov; Stenbjörn Styring; Eva-Mari Aro

The oxygen-evolving complex of eukaryotic photosystem II (PSII) consists of three extrinsic nuclear-encoded subunits, PsbO (33 kDa), PsbP (23 kDa), and PsbQ (17 kDa). Additionally, the 10-kDa PsbR protein has been found in plant PSII and anticipated to play a role in water oxidation, yet the physiological significance of PsbR has remained obscure. Using the Arabidopsis psbR mutant, we showed that the light-saturated rate of oxygen evolution is strongly reduced in the absence of PsbR, particularly in low light-grown plants. Lack of PsbR also induced a reduction in the content of both the PsbP and the PsbQ proteins, and a near depletion of these proteins was observed under steady state low light conditions. This regulation occurred post-transcriptionally and likely involves a proteolytic degradation of the PsbP and PsbQ proteins in the absence of an assembly partner, proposed to be the PsbR protein. Stable assembly of PsbR in the PSII core complex was, in turn, shown to require a chloroplast-encoded intrinsic low molecular mass PSII subunit PsbJ. Our results provided evidence that PsbR is an important link in the PSII core complex for stable assembly of the oxygen-evolving complex protein PsbP, whereas the effects on the assembly of PsbQ are probably indirect. The physiological role of the PsbR, PsbP, and PsbQ proteins is discussed in light of their peculiar expression in response to growth light conditions.


Biochimica et Biophysica Acta | 2012

Two tyrosines that changed the world: Interfacing the oxidizing power of photochemistry to water splitting in photosystem II.

Stenbjörn Styring; Johannes Sjöholm; Fikret Mamedov

Photosystem II (PSII), the thylakoid membrane enzyme which uses sunlight to oxidize water to molecular oxygen, holds many organic and inorganic redox cofactors participating in the electron transfer reactions. Among them, two tyrosine residues, Tyr-Z and Tyr-D are found on the oxidizing side of PSII. Both tyrosines demonstrate similar spectroscopic features while their kinetic characteristics are quite different. Tyr-Z, which is bound to the D1 core protein, acts as an intermediate in electron transfer between the primary donor, P(680) and the CaMn₄ cluster. In contrast, Tyr-D, which is bound to the D2 core protein, does not participate in linear electron transfer in PSII and stays fully oxidized during PSII function. The phenolic oxygens on both tyrosines form well-defined hydrogen bonds to nearby histidine residues, His(Z) and His(D) respectively. These hydrogen bonds allow swift and almost activation less movement of the proton between respective tyrosine and histidine. This proton movement is critical and the phenolic proton from the tyrosine is thought to toggle between the tyrosine and the histidine in the hydrogen bond. It is found towards the tyrosine when this is reduced and towards the histidine when the tyrosine is oxidized. The proton movement occurs at both room temperature and ultra low temperature and is sensitive to the pH. Essentially it has been found that when the pH is below the pK(a) for respective histidine the function of the tyrosine is slowed down or, at ultra low temperature, halted. This has important consequences for the function also of the CaMn₄ complex and the protonation reactions as the critical Tyr-His hydrogen bond also steer a multitude of reactions at the CaMn₄ cluster. This review deals with the discovery and functional assignments of the two tyrosines. The pH dependent phenomena involved in oxidation and reduction of respective tyrosine is covered in detail. This article is part of a Special Issue entitled: Photosystem II.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii.

Alena Volgusheva; Stenbjörn Styring; Fikret Mamedov

Photobiological H2 production is an attractive option for renewable solar fuels. Sulfur-deprived cells of Chlamydomonas reinhardtii have been shown to produce hydrogen with the highest efficiency among photobiological systems. We have investigated the photosynthetic reactions during sulfur deprivation and H2 production in the wild-type and state transition mutant 6 (Stm6) mutant of Chlamydomonas reinhardtii. The incubation period (130 h) was dissected into different phases, and changes in the amount and functional status of photosystem II (PSII) were investigated in vivo by electron paramagnetic resonance spectroscopy and variable fluorescence measurements. In the wild type it was found that the amount of PSII is decreased to 25% of the original level; the electron transport from PSII was completely blocked during the anaerobic phase preceding H2 formation. This block was released during the H2 production phase, indicating that the hydrogenase withdraws electrons from the plastoquinone pool. This partly removes the block in PSII electron transport, thereby permitting electron flow from water oxidation to hydrogenase. In the Stm6 mutant, which has higher respiration and H2 evolution than the wild type, PSII was analogously but much less affected. The addition of the PSII inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea revealed that ∼80% of the H2 production was inhibited in both strains. We conclude that (i) at least in the earlier stages, most of the electrons delivered to the hydrogenase originate from water oxidation by PSII, (ii) a faster onset of anaerobiosis preserves PSII from irreversible photoinhibition, and (iii) mutants with enhanced respiratory activity should be considered for better photobiological H2 production.


Biochimica et Biophysica Acta | 1999

The role of cytochrome b559 and tyrosineD in protection against photoinhibition during in vivo photoactivation of Photosystem II

Ann Magnuson; Maria Rova; Fikret Mamedov; Per-Olof Fredriksson; Stenbjörn Styring

In vivo photoactivation of Photosystem II was studied in the FUD39 mutant strain of the green alga Chlamydomonas reinhardtii which lacks the 23 kDa protein subunit involved in water oxidation. Dark grown cells, devoid of oxygen evolution, were illuminated at 0.8 μE m-2s-1 light intensity which promotes optimal activation of oxygen evolution, or at 17 μE m-2s-1, where photoactivation compete with deleterious photodamage. The involvement of the two redox active cofactors tyrosineD and cytochrome b559 during the photoactivation process, was investigated by EPR spectroscopy. TyrosineD on the D2 reaction center protein functions as auxiliary electron donor to the primary donor P+680 during the first minutes of photoactivation at 0.8 μE m-2s-1 (compare with Rova et al., Biochemistry, 37 (1998) 11039-11045.). Here we show that also cytochrome b559 was rapidly oxidized during the first 10 min of photoactivation with a similar rate to tyrosineD. This implies that both cytochrome b559 and tyrosineD may function as auxiliary electron donors to P+680 and/or the oxidized tyrosine&z.ccirf;Z on the D1 protein, to avoid photoinhibition before successful photoactivation was accomplished. As the catalytic water-oxidation successively became activated, TyrosineD remained oxidized while cytochrome b559 became rereduced to the equilibrium level that was observed prior to photoactivation. At 17 μE m-2s-1 light intensity, where photoinhibition competes significantly with photoactivation, tyrosineD was very rapidly completely oxidized, after which the amount of oxidized tyrosineD decreased due to photoinhibition. In contrast, cytochrome b559 became reduced during the first 2 min of photoactivation at 17 μE m-2s-1. After this, it was reoxidized, returning to the equilibrium level within 10 min. Thus, during in vivo photoactivation in high-light cytochrome b559 serves two functions. Initially, it probably oxidizes the reduced primary acceptor pheophytin, thereby relieving the acceptor side of reductive pressure, and later on it serves as auxiliary electron donor, preventing donor-side photoinhibition.


Plant Journal | 2011

The PsbW protein stabilizes the supramolecular organization of photosystem II in higher plants

José G. García-Cerdán; László Kovács; Tuende Toth; Sami Kereiche; Elena Aseeva; Egbert J. Boekema; Fikret Mamedov; Christiane Funk; Wolfgang P. Schröder

PsbW, a 6.1-kDa low-molecular-weight protein, is exclusive to photosynthetic eukaryotes, and associates with the photosystem II (PSII) protein complex. In vivo and in vitro comparison of Arabidopsis thaliana wild-type plants with T-DNA insertion knock-out mutants completely lacking the PsbW protein, or with antisense inhibition plants exhibiting decreased levels of PsbW, demonstrated that the loss of PsbW destabilizes the supramolecular organization of PSII. No PSII-LHCII supercomplexes could be detected or isolated in the absence of the PsbW protein. These changes in macro-organization were accompanied by a minor decrease in the chlorophyll fluorescence parameter F(V) /F(M) , a strongly decreased PSII core protein phosphorylation and a modification of the redox state of the plastoquinone (PQ) pool in dark-adapted leaves. In addition, the absence of PsbW protein led to faster redox changes in the PQ pool, i.e. transitions from state 1 to state 2, as measured by changes in stationary fluorescence (F(S) ) kinetics, compared with the wild type. Despite these dramatic effects on macromolecular structure, the transgenic plants exhibited no significant phenotype under normal growth conditions. We suggest that the PsbW protein is located close to the minor antenna of the PSII complex, and is important for the contact and stability between several PSII-LHCII supercomplexes.


Biochimica et Biophysica Acta | 2009

Comparison of the electron transport properties of the psbo1 and psbo2 mutants of Arabidopsis thaliana.

Yagut Allahverdiyeva; Fikret Mamedov; Maija Holmström; Markus Nurmi; Björn Lundin; Stenbjörn Styring; Eva-Mari Aro

Genome sequence of Arabidopsis thaliana (Arabidopsis) revealed two psbO genes (At5g66570 and At3g50820) which encode two distinct PsbO isoforms: PsbO1 and PsbO2, respectively. To get insights into the function of the PsbO1 and PsbO2 isoforms in Arabidopsis we have performed systematic and comprehensive investigations of the whole photosynthetic electron transfer chain in the T-DNA insertion mutant lines, psbo1 and psbo2. The absence of the PsbO1 isoform and presence of only the PsbO2 isoform in the psbo1 mutant results in (i) malfunction of both the donor and acceptor sides of Photosystem (PS) II and (ii) high sensitivity of PSII centers to photodamage, thus implying the importance of the PsbO1 isoform for proper structure and function of PSII. The presence of only the PsbO2 isoform in the PSII centers has consequences not only to the function of PSII but also to the PSI/PSII ratio in thylakoids. These results in modification of the whole electron transfer chain with higher rate of cyclic electron transfer around PSI, faster induction of NPQ and a larger size of the PQ-pool compared to WT, being in line with apparently increased chlororespiration in the psbo1 mutant plants. The presence of only the PsbO1 isoform in the psbo2 mutant did not induce any significant differences in the performance of PSII under standard growth conditions as compared to WT. Nevertheless, under high light illumination, it seems that the presence of also the PsbO2 isoform becomes favourable for efficient repair of the PSII complex.


Nature plants | 2016

Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation

Arjun Tiwari; Fikret Mamedov; Michele Grieco; Marjaana Suorsa; Anjana Jajoo; Stenbjörn Styring; Mikko Tikkanen; Eva-Mari Aro

Photosystem I (PSI) uses light energy and electrons supplied by photosystem II (PSII) to reduce NADP+ to NADPH. PSI is very tolerant of excess light but extremely sensitive to excess electrons from PSII. It has been assumed that PSI is protected from photoinhibition by strict control of the intersystem electron transfer chain (ETC). Here we demonstrate that the iron–sulphur (FeS) clusters of PSI are more sensitive to high light stress than previously anticipated, but PSI with damaged FeS clusters still functions as a non-photochemical photoprotective energy quencher (PSI-NPQ). Upon photoinhibition of PSI, the highly reduced ETC further triggers thylakoid phosphorylation-based mechanisms that increase energy flow towards PSI. It is concluded that the sensitivity of FeS clusters provides an additional photoprotective mechanism that is able to downregulate PSII, based on PSI quenching and protein phosphorylation.


RSC Advances | 2015

Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation

A.A. Volgusheva; G. P. Kukarskikh; T. E. Krendeleva; A.B. Rubin; Fikret Mamedov

The effect of Mg-deprivation on green algae Chlamydomonas reinhardtii was studied. It resulted in the decrease of photosynthetic activity, increased respiration and accumulation of starch. After 35 hours anaerobic conditions were established and sustained H2 evolution (>7 days) was detected.

Collaboration


Dive into the Fikret Mamedov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge