Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filip Boyen is active.

Publication


Featured researches published by Filip Boyen.


Veterinary Microbiology | 2008

Non-typhoidal Salmonella infections in pigs: A closer look at epidemiology, pathogenesis and control

Filip Boyen; Freddy Haesebrouck; Dominiek Maes; F. Van Immerseel; Richard Ducatelle; Frank Pasmans

Contaminated pork is an important source of Salmonella infections in humans. The increasing multiple antimicrobial resistance associated with pork-related serotypes such as Salmonella Typhimurium and Salmonella Derby may become a serious human health hazard in the near future. Governments try to anticipate the issue of non-typhoidal Salmonella infections in pork by starting monitoring programmes and coordinating control measures worldwide. A thorough knowledge of how these serotypes interact with the porcine host should form the basis for the development and optimisation of these monitoring and control programmes. During recent years, many researchers have focussed on different aspects of the pathogenesis of non-typhoidal Salmonella infections in pigs. The present manuscript reviews the importance of pigs and pork as a source for salmonellosis in humans and discusses commonly accepted and recent insights in the pathogenesis of non-typhoidal Salmonella infections in pigs, with emphasis on Salmonella Typhimurium, and to relate this knowledge to possible control measures.


Journal of Antimicrobial Chemotherapy | 2014

Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: a report on seven countries

Ilias Chantziaras; Filip Boyen; Benedicte Callens; Jeroen Dewulf

OBJECTIVES To evaluate correlations between antimicrobial use and the prevalence of resistance in commensal Escherichia coli isolates from pigs, poultry and cattle, using data from publicly available national or international reports from seven European countries. METHODS The link between the quantities of different classes of antimicrobials administered to food-producing animals per country (expressed in mg/population correction unit) and the prevalence of resistance to the different antimicrobial classes (interpreted by EUCAST epidemiological cut-off values) in E. coli isolates (4831 isolates in total) was assessed by means of polynomial regression analysis and determination of Spearmans rank correlation coefficient. RESULTS A quadratic regression best fitted the antimicrobial use and antimicrobial resistance data. The coefficient of determination was, in decreasing order, 0.99 for fluoroquinolones and amphenicols, 0.94 for third-generation cephalosporins and sulphonamides, 0.93 for aminopenicillins, 0.86 for fluoroquinolones, 0.81 for streptomycin and 0.80 for gentamicin and tetracycline. Spearmans rank correlation coefficient was 1 for amphenicols, 0.96 for sulphonamides, 0.93 for streptomycin and tetracycline, 0.89 for aminopenicillins, 0.71 for gentamicin and 0.70 for third-generation cephalosporins. CONCLUSIONS These remarkably high coefficients indicate that, at a national level, the level of use of specific antimicrobials strongly correlates to the level of resistance towards these agents in commensal E. coli isolates in pigs, poultry and cattle. However, data restraints reveal the need for further detail in collection and harmonization of antimicrobial resistance and use data in Europe.


Applied and Environmental Microbiology | 2004

Medium-Chain Fatty Acids Decrease Colonization and Invasion through hilA Suppression Shortly after Infection of Chickens with Salmonella enterica Serovar Enteritidis

F. Van Immerseel; J. De Buck; Filip Boyen; Lotte Bohez; Frank Pasmans; Jiri Volf; M. Sevcik; Ivan Rychlik; Freddy Haesebrouck; Richard Ducatelle

ABSTRACT The most common source of Salmonella infections in humans is food of poultry origin. Salmonella enterica serovar Enteritidis has a particular affinity for the contamination of the egg supply. In this study, the medium-chain fatty acids (MCFA), caproic, caprylic, and capric acid, were evaluated for the control of Salmonella serovar Enteritidis in chickens. All MCFA were growth inhibiting at low concentrations in vitro, with caproic acid being the most potent. Contact of Salmonella serovar Enteritidis with low concentrations of MCFA decreased invasion in the intestinal epithelial cell line T84. By using transcriptional fusions between the promoter of the regulatory gene of the Salmonella pathogenicity island I, hilA, and luxCDABE genes, it was shown that all MCFA decreased the expression of hilA, a key regulator related to the invasive capacity of Salmonella. The addition of caproic acid (3 g/kg of feed) to the feed of chicks led to a significant decrease in the level of colonization of ceca and internal organs by Salmonella serovar Enteritidis at 3 days after infection of 5-day-old chicks. These results suggest that MCFA have a synergistic ability to suppress the expression of the genes required for invasion and to reduce the numbers of bacteria in vivo. Thus, MCFA are potentially useful products for reducing the level of colonization of chicks and could ultimately aid in the reduction of the number of contaminated eggs in the food supply.


Preventive Veterinary Medicine | 2012

Prophylactic and metaphylactic antimicrobial use in Belgian fattening pig herds

Benedicte Callens; Davy Persoons; Dominiek Maes; Maria Laanen; Merel Postma; Filip Boyen; Freddy Haesebrouck; Patrick Butaye; Boudewijn Catry; Jeroen Dewulf

The monitoring of antimicrobial use is an essential step to control the selection and spread of antimicrobial resistance. Between January and October 2010 data on prophylactic and metaphylactic antimicrobial use were collected retrospectively on 50 closed or semi-closed pig herds. Ninety-three percent of the group treatments were prophylactic whereas only 7% were methaphylactic. The most frequently used antimicrobials orally applied at group level were colistin (30.7%), amoxicillin (30.0%), trimethoprim-sulfonamides (13.1%), doxycycline (9.9%) and tylosin (8.1%). The most frequently applied injectable antimicrobials were tulathromycin (45.0%), long acting ceftiofur (40.1%) and long acting amoxicillin (8.4%). The treatment incidences (TI) based on the used daily dose pig (UDD(pig) or the actually administered dose per day per kg pig of a drug) for all oral and injectable antimicrobial drugs was on average 200.7 per 1000 pigs at risk per day (min=0, max=699.0), while the TI based on the animal daily dose pig (ADD(pig) or the national defined average maintenance dose per day per kg pig of a drug used for its main indication) was slightly higher (average=235.8, min=0, max=1322.1). This indicates that in reality fewer pigs were treated with the same amount of antimicrobials than theoretically possible. Injectable products were generally overdosed (79.5%), whereas oral treatments were often underdosed (47.3%). In conclusion, this study shows that prophylactic group treatment was applied in 98% of the visited herds and often includes the use of critically important and broad-spectrum antimicrobials. In Belgium, the guidelines for prudent use of antimicrobials are not yet implemented.


Veterinary Microbiology | 2008

Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs

Filip Boyen; Freddy Haesebrouck; A. Vanparys; Jiri Volf; Maxime Mahu; F. Van Immerseel; Ivan Rychlik; Jeroen Dewulf; Richard Ducatelle; Frank Pasmans

Salmonella Typhimurium infections in pigs are a major source of human foodborne salmonellosis. To reduce the number of infected pigs, acidification of feed or drinking water is a common practice. The aim of the present study was to determine whether some frequently used short- (SCFA) and medium-chain fatty acids (MCFA) are able to alter virulence gene expression and to decrease Salmonella Typhimurium colonization and shedding in pigs using well established and controlled in vitro and in vivo assays. Minimal inhibitory concentrations (MIC) of 4 SCFA (formic acid, acetic acid, propionic acid and butyric acid) and 2 MCFA (caproic and caprylic acid) were determined using 54 porcine Salmonella Typhimurium field strains. MIC values increased at increasing pH-values and were two to eight times lower for MCFA than for SCFA. Expression of virulence gene fimA was significantly lower when bacteria were grown in LB-broth supplemented with sub-MIC concentrations of caproic or caprylic acid (2 mM). Expression of hilA and invasion in porcine intestinal epithelial cells was significantly lower when bacteria were grown in LB-broth containing sub-MIC concentrations of butyric acid or propionic acid (10 mM) and caproic or caprylic acid (2 mM). When given as feed supplement to pigs experimentally infected with Salmonella Typhimurium, coated butyric acid decreased the levels of faecal shedding and intestinal colonization, but had no influence on the colonization of tonsils, spleen and liver. Uncoated fatty acids, however, did not influence fecal shedding, intestinal or tonsillar colonization in pigs. In conclusion, supplementing feed with certain coated fatty acids, such as butyric acid, may help to reduce the Salmonella load in pigs.


Veterinary Microbiology | 2012

The complex interplay between stress and bacterial infections in animals

Elin Verbrugghe; Filip Boyen; Wim Gaastra; Leonie Bekhuis; Bregje Leyman; Alexander Van Parys; Freddy Haesebrouck; Frank Pasmans

Over the past decade, an increasing awareness has arisen of the role of neuroendocrine hormones in the susceptibility of mammalian hosts to a bacterial infection. During a stress response, glucocorticoids, catecholamines and neuroendocrine factors are released into the circulation of the host. For a long time the effects of stress on the course of an infection have been exclusively ascribed to the direct effect of stress-related hormones on the immune system and the intestinal barrier function. Chronic stress is known to cause a shift from T helper 1-mediated cellular immunity toward T helper 2-mediated humoral immunity, which can influence the course of an infection and/or the susceptibility to a microorganism. Bacteria can however also respond directly to stress-related host signals. Catecholamines can alter growth, motility, biofilm formation and/or virulence of pathogens and commensal bacteria, and as a consequence influence the outcome of infections by these bacteria in many hosts. For some bacteria, such as Salmonella, Escherichia coli and Pseudomonas aeruginosa it was shown that this influence is regulated by quorum sensing mechanisms. In this manuscript an overview of how and when stress influences the outcome of bacterial infections in animals is provided.


PLOS ONE | 2011

The Mycotoxin Deoxynivalenol Potentiates Intestinal Inflammation by Salmonella Typhimurium in Porcine Ileal Loops

Virginie Vandenbroucke; Siska Croubels; An Martel; Elin Verbrugghe; Joline Goossens; Kim Van Deun; Filip Boyen; Arthur R. Thompson; Neil Shearer; Patrick De Backer; Freddy Haesebrouck; Frank Pasmans

Background and Aims Both deoxynivalenol (DON) and nontyphoidal salmonellosis are emerging threats with possible hazardous effects on both human and animal health. The objective of this study was to examine whether DON at low but relevant concentrations interacts with the intestinal inflammation induced by Salmonella Typhimurium. Methodology By using a porcine intestinal ileal loop model, we investigated whether intake of low concentrations of DON interacts with the early intestinal inflammatory response induced by Salmonella Typhimurium. Results A significant higher expression of IL-12 and TNFα and a clear potentiation of the expression of IL-1β, IL-8, MCP-1 and IL-6 was seen in loops co-exposed to 1 µg/mL of DON and Salmonella Typhimurium compared to loops exposed to Salmonella Typhimurium alone. This potentiation coincided with a significantly enhanced Salmonella invasion in and translocation over the intestinal epithelial IPEC-J2 cells, exposed to non-cytotoxic concentrations of DON for 24 h. Exposure of Salmonella Typhimurium to 0.250 µg/mL of DON affected the bacterial gene expression level of a limited number of genes, however none of these expression changes seemed to give an explanation for the increased invasion and translocation of Salmonella Typhimurium and the potentiated inflammatory response in combination with DON. Conclusion These data imply that the intake of low and relevant concentrations of DON renders the intestinal epithelium more susceptible to Salmonella Typhimurium with a subsequent potentiation of the inflammatory response in the gut.


Veterinary Research | 2011

Stress induced Salmonella Typhimurium recrudescence in pigs coincides with cortisol induced increased intracellular proliferation in macrophages

Elin Verbrugghe; Filip Boyen; Alexander Van Parys; Kim Van Deun; Siska Croubels; Arthur R. Thompson; Neil Shearer; Bregje Leyman; Freddy Haesebrouck; Frank Pasmans

Salmonella Typhimurium infections in pigs often result in the development of carriers that intermittently excrete Salmonella in very low numbers. During periods of stress, for example transport to the slaughterhouse, recrudescence of Salmonella may occur, but the mechanism of this stress related recrudescence is poorly understood. Therefore, the aim of the present study was to determine the role of the stress hormone cortisol in Salmonella recrudescence by pigs. We showed that a 24 h feed withdrawal increases the intestinal Salmonella Typhimurium load in pigs, which is correlated with increased serum cortisol levels. A second in vivo trial demonstrated that stress related recrudescence of Salmonella Typhimurium in pigs can be induced by intramuscular injection of dexamethasone. Furthermore, we found that cortisol, but not epinephrine, norepinephrine and dopamine, promotes intracellular proliferation of Salmonella Typhimurium in primary porcine alveolar macrophages, but not in intestinal epithelial cells and a transformed cell line of porcine alveolar macrophages. A microarray based transcriptomic analysis revealed that cortisol did not directly affect the growth or the gene expression or Salmonella Typhimurium in a rich medium, which implies that the enhanced intracellular proliferation of the bacterium is probably caused by an indirect effect through the cell. These results highlight the role of cortisol in the recrudescence of Salmonella Typhimurium by pigs and they provide new evidence for the role of microbial endocrinology in host-pathogen interactions.


Laboratory Animals | 2009

Porcine in vitro and in vivo models to assess the virulence of Salmonella enterica serovar Typhimurium for pigs.

Filip Boyen; Frank Pasmans; F. Van Immerseel; Eef Donné; Eirwen Morgan; Richard Ducatelle; Freddy Haesebrouck

Salmonella Typhimurium infections in pigs pose an important human health hazard. One promising control measure is the development of live attenuated vaccine strains using defined knockout mutants. Preferably, screening of candidate knockout vaccine strains for attenuation should first be done in models allowing testing of a large number of strains. Thereafter, a limited number of selected strains should be further characterized in an experimental infection model in pigs. The aim of the present study was to develop such models. The invasive and proliferative characteristics of S. Typhimurium were assessed in both a non-polarized and a polarized porcine intestinal epithelial cell line. Neutrophils obtained from porcine blood were used to study the capacity of Salmonella to withstand killing by these phagocytes. The ability to induce an intestinal inflammatory response was investigated in a terminal intestinal loop model. The systemic phase of infection was mimicked by studying the uptake and intracellular survival of S. Typhimurium in porcine pulmonary alveolar macrophages and peripheral blood monocytes. These models should allow screening for attenuated strains. For further characterization, an experimental infection model was established, providing extensive data on the course of an oral infection and the optimal time points for colonization (day 5 postinoculation [pi]) and persistency (days 21–28 pi) in pigs. In conclusion, screening for virulence of S. Typhimurium strains with subsequent confirmation for a subset of strains in a well-defined experimental infection model would significantly reduce the number of experimental pigs required.


Vaccine | 2011

Salmonella Typhimurium LPS mutations for use in vaccines allowing differentiation of infected and vaccinated pigs

Bregje Leyman; Filip Boyen; Alexander Van Parys; Elin Verbrugghe; Freddy Haesebrouck; Frank Pasmans

Contaminated pork is a major source of human salmonellosis and the serovar most frequently isolated from pigs is Salmonella Typhimurium. Vaccination could contribute greatly to controlling Salmonella infections in pigs. However, pigs vaccinated with the current vaccines cannot be discriminated from infected pigs with the LPS-based serological tests used in European Salmonella serosurveillance programmes. We therefore examined which LPS encoding genes of Salmonella Typhimurium can be deleted to allow differentiation of infected and vaccinated pigs (DIVA), without affecting the vaccine strains protective capacity. For this purpose, deletion mutants in Salmonella strain 112910a, used as vaccine strain, were constructed in the LPS encoding genes: ΔrfbA, ΔrfaL, ΔrfaJ, ΔrfaI, ΔrfaG and ΔrfaF. Primary inoculation of BALB/c mice with the parent strain, ΔrfaL, ΔrfbA or ΔrfaJ strain but not the ΔrfaG, ΔrfaF or ΔrfaI strain protected significantly against subsequent infection with the virulent Salmonella Typhimurium strain NCTC12023. Immunization of piglets with the ΔrfaJ or ΔrfaL mutants resulted in the induction of a serological response lacking detectable antibodies against LPS. This allowed a clear differentiation between sera from pigs immunized with the ΔrfaJ or ΔrfaL strains and sera from pigs infected with their isogenic wild type strain. In conclusion, applying deletions in the rfaJ or the rfaL gene in Salmonella Typhimurium strain 112910a allows differentiation of infected and vaccinated pigs in an LPS based ELISA without reducing the strains protective capacities in mice.

Collaboration


Dive into the Filip Boyen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge