Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filip Janku is active.

Publication


Featured researches published by Filip Janku.


Nature Reviews Clinical Oncology | 2011

Autophagy as a target for anticancer therapy.

Filip Janku; David J. McConkey; David S. Hong; Razelle Kurzrock

Autophagy is an important homeostatic cellular recycling mechanism responsible for degrading unnecessary or dysfunctional cellular organelles and proteins in all living cells. Autophagy is particularly active during metabolic stress. In the cancer cell it fulfils a dual role, having tumor-promoting and tumor-suppressing properties. Functional autophagy prevents necrosis and inflammation, which can lead to genetic instability. On the other hand, autophagy might be important for tumor progression by providing energy through its recycling mechanism during unfavorable metabolic circumstances. A central checkpoint that negatively regulates autophagy is mTOR, and anticancer drugs inhibiting the PI3K/Akt/mTOR axis putatively stimulate autophagy. However, whether autophagy contributes to the antitumor effect of these drugs or to drug resistance is largely unknown. The antimalarial drugs chloroquine and hydroxychloroquine inhibit autophagy, leading to increased cytotoxicity in combination with several anticancer drugs in preclinical models. The therapeutic clinical roles of autophagy induction and inhibition remain to be defined. To improve our understanding of autophagy in human cancers new methods for measuring autophagy in clinical samples need to be developed. This Review delineates the possible role of autophagy as a novel target for anticancer therapy.


Journal of Clinical Oncology | 2012

PI3K/AKT/mTOR Inhibitors in Patients With Breast and Gynecologic Malignancies Harboring PIK3CA Mutations

Filip Janku; Jennifer J. Wheler; Shannon N. Westin; Stacy L. Moulder; Aung Naing; Apostolia M. Tsimberidou; Siqing Fu; Gerald S. Falchook; David S. Hong; Ignacio Garrido-Laguna; Rajyalakshmi Luthra; J. Jack Lee; Karen H. Lu; Razelle Kurzrock

PURPOSE Mutations of the PIK3CA gene may predict response to phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitors. Concomitant mutations in the mitogen-activated protein kinase (MAPK) pathway may mediate resistance. PATIENTS AND METHODS Tumors from patients with breast, cervical, endometrial, and ovarian cancer referred to the Clinical Center for Targeted Therapy (Phase I Program) were analyzed for PIK3CA, KRAS, NRAS, and BRAF mutations. Patients with PIK3CA mutations were treated, whenever feasible, with agents targeting the PI3K/AKT/mTOR pathway. RESULTS Of 140 patients analyzed, 25 (18%) had PIK3CA mutations, including five of 14 patients with squamous cell cervical, seven of 29 patients with endometrial, six of 29 patients with breast, and seven of 60 patients with ovarian cancers. Of the 25 patients with PIK3CA mutations, 23 (median of two prior therapies) were treated on a protocol that included a PI3K/AKT/mTOR pathway inhibitor. Two (9%) of 23 patients had stable disease for more than 6 months, and seven patients (30%) had a partial response. In comparison, only seven (10%) of 70 patients with the same disease types but with wild-type PIK3CA treated on the same protocols responded (P = .04). Seven patients (30%) with PIK3CA mutations had coexisting MAPK pathway (KRAS, NRAS, BRAF) mutations (ovarian cancer, n = 5; endometrial cancer, n = 2), and two of these patients (ovarian cancer) achieved a response. CONCLUSION PIK3CA mutations were detected in 18% of tested patients. Patients with PIK3CA mutations treated with PI3K/AKT/mTOR inhibitors demonstrated a higher response rate than patients without mutations. A subset of patients with ovarian cancer with simultaneous PIK3CA and MAPK mutations responded to PI3K/AKT/mTOR inhibitors, suggesting that not all patients demonstrate resistance when the MAPK pathway is concomitantly activated.


Clinical Cancer Research | 2012

Personalized Medicine in a Phase I Clinical Trials Program: The MD Anderson Cancer Center Initiative

Apostolia M. Tsimberidou; Nancy G. Iskander; David S. Hong; Jennifer J. Wheler; Gerald S. Falchook; Siqing Fu; Sarina Anne Piha-Paul; Aung Naing; Filip Janku; Rajyalakshmi Luthra; Yang Ye; Sijin Wen; Donald A. Berry; Razelle Kurzrock

Purpose: We initiated a personalized medicine program in the context of early clinical trials, using targeted agents matched with tumor molecular aberrations. Herein, we report our observations. Patient and Methods: Patients with advanced cancer were treated in the Clinical Center for Targeted Therapy. Molecular analysis was conducted in the MD Anderson Clinical Laboratory Improvement Amendments (CLIA)–certified laboratory. Patients whose tumors had an aberration were treated with matched targeted therapy, when available. Treatment assignment was not randomized. The clinical outcomes of patients with molecular aberrations treated with matched targeted therapy were compared with those of consecutive patients who were not treated with matched targeted therapy. Results: Of 1,144 patients analyzed, 460 (40.2%) had 1 or more aberration. In patients with 1 molecular aberration, matched therapy (n = 175) compared with treatment without matching (n = 116) was associated with a higher overall response rate (27% vs. 5%; P < 0.0001), longer time-to-treatment failure (TTF; median, 5.2 vs. 2.2 months; P < 0.0001), and longer survival (median, 13.4 vs. 9.0 months; P = 0.017). Matched targeted therapy was associated with longer TTF compared with their prior systemic therapy in patients with 1 mutation (5.2 vs. 3.1 months, respectively; P < 0.0001). In multivariate analysis in patients with 1 molecular aberration, matched therapy was an independent factor predicting response (P = 0.001) and TTF (P = 0.0001). Conclusion: Keeping in mind that the study was not randomized and patients had diverse tumor types and a median of 5 prior therapies, our results suggest that identifying specific molecular abnormalities and choosing therapy based on these abnormalities is relevant in phase I clinical trials. Clin Cancer Res; 18(22); 6373–83. ©2012 AACR.


Molecular Cancer Therapeutics | 2011

PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors

Filip Janku; Apostolia M. Tsimberidou; Ignacio Garrido-Laguna; Xuemei Wang; Rajyalakshmi Luthra; David S. Hong; Aung Naing; Gerald S. Falchook; John Moroney; Sarina Anne Piha-Paul; Jennifer J. Wheler; Stacy L. Moulder; Siqing Fu; Razelle Kurzrock

Preclinical data suggest that PIK3CA mutations predict response to PI3K/AKT/mTOR inhibitors. Concomitant KRAS or BRAF mutations may mediate resistance. Therefore, tumors from patients referred to the phase I program for targeted therapy starting in October 2008 were analyzed for PIK3CA mutations using PCR-based DNA sequencing of exons 9 and 20. Consecutive patients with diverse tumor types and PIK3CA mutation were treated whenever possible with agents targeting the PI3K/AKT/mTOR pathway. Overall, PIK3CA mutations were detected in 25 of 217 patients (11.5%; exon 9, n = 11; exon 20, n = 14). In tumor types with more than 10 patients tested, PIK3CA mutations were most frequent in endometrial (3 of 14, 21%), ovarian (5 of 30, 17%), colorectal (9 of 54, 17%), breast (2 of 14, 14%), cervical (2 of 15, 13%), and squamous cell cancer of the head and neck (1 of 11, 9%). Of the 25 patients with PIK3CA mutations, 17 (68%) were treated on a protocol that included a PI3K/AKT/mTOR pathway inhibitor, and 6 (35%) achieved a partial response. In contrast, only 15 of 241 patients (6%) without documented PIK3CA mutations treated on the same protocols responded (P = 0.001). Of the 17 patients with PIK3CA mutations, 6 (35%) had simultaneous KRAS or BRAF mutations (colorectal, n = 4; ovarian, n = 2). Colorectal cancer patients with PIK3CA and KRAS mutations did not respond to therapy, whereas both ovarian cancer patients with PIK3CA and KRAS or BRAF mutations did. In conclusion, PIK3CA mutations were detected in 11.5% of patients with diverse solid tumors. The response rate was significantly higher for patients with PIK3CA mutations treated with PI3K/AKT/mTOR pathway inhibitors than for those without documented mutations. Mol Cancer Ther; 10(3); 558–65. ©2011 AACR.


Blood | 2014

Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease

Eli L. Diamond; Lorenzo Dagna; David M. Hyman; Giulio Cavalli; Filip Janku; Juvianee Estrada-Veras; Marina Ferrarini; Omar Abdel-Wahab; Mark L. Heaney; Paul J. Scheel; Nancy Feeley; Elisabetta Ferrero; Kenneth L. McClain; Augusto Vaglio; Thomas V. Colby; Laurent Arnaud; Julien Haroche

Erdheim-Chester disease (ECD) is a rare, non-Langerhans histiocytosis. Recent findings suggest that ECD is a clonal disorder, marked by recurrent BRAFV600E mutations in >50% of patients, in which chronic uncontrolled inflammation is an important mediator of disease pathogenesis. Although ∼500 to 550 cases have been described in the literature to date, increased physician awareness has driven a dramatic increase in ECD diagnoses over the last decade. ECD frequently involves multiple organ systems and has historically lacked effective therapies. Given the protean clinical manifestations and the lack of a consensus-derived approach for the management of ECD, we provide here the first multidisciplinary consensus guidelines for the clinical management of ECD. These recommendations were outlined at the First International Medical Symposium for ECD, comprised of a comprehensive group of international academicians with expertise in the pathophysiology and therapy of ECD. Detailed recommendations on the initial clinical, laboratory, and radiographic assessment of ECD patients are presented in addition to treatment recommendations based on critical appraisal of the literature and clinical experience. These formalized consensus descriptions will hopefully facilitate ongoing and future research efforts in this disorder.


Cancer Research | 2013

PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials.

Filip Janku; Jennifer J. Wheler; Aung Naing; Gerald S. Falchook; David S. Hong; Vanda M. Stepanek; Siqing Fu; Sarina Anne Piha-Paul; J. Jack Lee; Rajyalakshmi Luthra; Apostolia M. Tsimberidou; Razelle Kurzrock

PIK3CA mutations may predict response to PI3K/AKT/mTOR inhibitors in patients with advanced cancers, but the relevance of mutation subtype has not been investigated. Patients with diverse cancers referred to the Clinical Center for Targeted Therapy were analyzed for PIK3CA and, if possible, KRAS mutations. Patients with PIK3CA mutations were treated, whenever possible, with agents targeting the PI3K/AKT/mTOR pathway. Overall, 105 (10%) of 1,012 patients tested harbored PIK3CA mutations. Sixty-six (median 3 prior therapies) of the 105 PIK3CA-mutant patients, including 16 individuals (of 55 PIK3CA-mutant patients tested) with simultaneous KRAS mutations, were treated on a protocol that included a PI3K/AKT/mTOR pathway inhibitor; 17% (11/66) achieved a partial response (PR). Patients with a PIK3CA H1047R mutation compared with patients who had other PIK3CA mutations or patients with wild-type PIK3CA treated on the same protocols had a higher PR rate (6/16, 38% vs. 5/50; 10% vs. 23/174, 13%, respectively; all P ≤ 0.02). None of the 16 patients with coexisting PIK3CA and KRAS mutations in codon 12 or 13 attained a PR (0/16, 0%). Patients treated with combination therapy versus single-agent therapies had a higher PR rate (11/38, 29% vs. 0/28, 0%; P = 0.002). Multivariate analysis showed that H1047R was the only independent factor predicting response [OR 6.6, 95% confidence interval (CI), 1.02-43.0, P = 0.047). Our data suggest that interaction between PIK3CA mutation H1047R versus other aberrations and response to PI3K/AKT/mTOR axis inhibitors warrants further exploration.


Nature Reviews Clinical Oncology | 2010

Targeted therapy in non-small-cell lung cancer—is it becoming a reality?

Filip Janku; David J. Stewart; Razelle Kurzrock

Treatment outcomes in advanced or metastatic non-small-cell lung cancer (NSCLC) remain unsatisfactory, with low long-term survival rates. Palliative chemotherapy offers a median survival not exceeding 1 year. To date, various combinations of cytotoxic drugs have not improved treatment results beyond what has been observed with platinum doublets. By contrast, molecular targeted drugs may block important pathways that drive cancer progression and achieve long-term disease control. Conflicting results have demonstrated marginal benefit with EGFR inhibitors, anti-EGFR monoclonal antibodies and antiangiogenic strategies in unselected populations of patients with advanced NSCLC. However, patients with an EGFR mutation are likely to respond to agents that target this gene. Novel targeted therapies that interfere with insulin-like growth factor 1 receptor, or the EML4-ALK fusion protein have shown promising activity. Aberrations in other key signaling pathways and molecules, such as RAS/RAF/MEK, PI3K/AKT/mTOR, or MET kinase, have been identified as crucial targets, especially in resistant patients. Novel drugs aimed at these abnormalities are already in the clinic. This Review outlines the current state-of-the-art research for targeted therapy in NSCLC.


Blood | 2016

Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages

Jean-François Emile; Oussama Abla; Sylvie Fraitag; AnnaCarin Horne; Julien Haroche; Jean Donadieu; Luis Requena-Caballero; Michael B. Jordan; Omar Abdel-Wahab; Carl E. Allen; Frédéric Charlotte; Eli L. Diamond; R. Maarten Egeler; Alain Fischer; Juana Gil Herrera; Jan-Inge Henter; Filip Janku; Miriam Merad; Jennifer Picarsic; Carlos Rodriguez-Galindo; Barret Rollins; Abdellatif Tazi; Robert Vassallo; Lawrence M. Weiss

The histiocytoses are rare disorders characterized by the accumulation of macrophage, dendritic cell, or monocyte-derived cells in various tissues and organs of children and adults. More than 100 different subtypes have been described, with a wide range of clinical manifestations, presentations, and histologies. Since the first classification in 1987, a number of new findings regarding the cellular origins, molecular pathology, and clinical features of histiocytic disorders have been identified. We propose herein a revision of the classification of histiocytoses based on histology, phenotype, molecular alterations, and clinical and imaging characteristics. This revised classification system consists of 5 groups of diseases: (1) Langerhans-related, (2) cutaneous and mucocutaneous, and (3) malignant histiocytoses as well as (4) Rosai-Dorfman disease and (5) hemophagocytic lymphohistiocytosis and macrophage activation syndrome. Herein, we provide guidelines and recommendations for diagnoses of these disorders.


Journal of Clinical Oncology | 2015

Feasibility of Large-Scale Genomic Testing to Facilitate Enrollment Onto Genomically Matched Clinical Trials

Funda Meric-Bernstam; Lauren Brusco; Kenna Shaw; Chacha Horombe; Scott Kopetz; Michael A. Davies; Mark Routbort; Sarina Anne Piha-Paul; Filip Janku; Naoto T. Ueno; David S. Hong; John F. de Groot; Vinod Ravi; Yisheng Li; Raja Luthra; Keyur P. Patel; Russell Broaddus; John Mendelsohn; Gordon B. Mills

PURPOSE We report the experience with 2,000 consecutive patients with advanced cancer who underwent testing on a genomic testing protocol, including the frequency of actionable alterations across tumor types, subsequent enrollment onto clinical trials, and the challenges for trial enrollment. PATIENTS AND METHODS Standardized hotspot mutation analysis was performed in 2,000 patients, using either an 11-gene (251 patients) or a 46- or 50-gene (1,749 patients) multiplex platform. Thirty-five genes were considered potentially actionable based on their potential to be targeted with approved or investigational therapies. RESULTS Seven hundred eighty-nine patients (39%) had at least one mutation in potentially actionable genes. Eighty-three patients (11%) with potentially actionable mutations went on genotype-matched trials targeting these alterations. Of 230 patients with PIK3CA/AKT1/PTEN/BRAF mutations that returned for therapy, 116 (50%) received a genotype-matched drug. Forty patients (17%) were treated on a genotype-selected trial requiring a mutation for eligibility, 16 (7%) were treated on a genotype-relevant trial targeting a genomic alteration without biomarker selection, and 40 (17%) received a genotype-relevant drug off trial. Challenges to trial accrual included patient preference of noninvestigational treatment or local treatment, poor performance status or other reasons for trial ineligibility, lack of trials/slots, and insurance denial. CONCLUSION Broad implementation of multiplex hotspot testing is feasible; however, only a small portion of patients with actionable alterations were actually enrolled onto genotype-matched trials. Increased awareness of therapeutic implications and access to novel therapeutics are needed to optimally leverage results from broad-based genomic testing.


Cell Reports | 2014

Assessing PIK3CA and PTEN in early-phase trials with PI3K/AKT/mTOR inhibitors

Filip Janku; David S. Hong; Siqing Fu; Sarina Anne Piha-Paul; Aung Naing; Gerald S. Falchook; Apostolia M. Tsimberidou; Vanda M. Stepanek; Stacy L. Moulder; J. Jack Lee; Rajyalakshmi Luthra; Ralph Zinner; Russell Broaddus; Jennifer J. Wheler; Razelle Kurzrock

Despite a wealth of preclinical studies, it is unclear whether PIK3CA or phosphatase and tensin homolog (PTEN) gene aberrations are actionable in the clinical setting. Of 1,656 patients with advanced, refractory cancers tested for PIK3CA or PTEN abnormalities, PIK3CA mutations were found in 9% (146/1,589), and PTEN loss and/or mutation was found in 13% (149/1,157). In multicovariable analysis, treatment with a phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitor was the only independent factor predicting response to therapy in individuals harboring a PIK3CA or PTEN aberration. The rate of stable disease ≥6 months/partial response reached 45% in a subgroup of individuals with H1047R PIK3CA mutations. Aberrations in the PI3K/AKT/mTOR pathway are common and potentially actionable in patients with diverse advanced cancers. This work provides further important clinical validation for continued and accelerated use of biomarker-driven trials incorporating rational drug combinations.

Collaboration


Dive into the Filip Janku's collaboration.

Top Co-Authors

Avatar

David S. Hong

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Aung Naing

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sarina Anne Piha-Paul

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Siqing Fu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Apostolia M. Tsimberidou

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer J. Wheler

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vivek Subbiah

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gerald S. Falchook

Sarah Cannon Research Institute

View shared research outputs
Top Co-Authors

Avatar

Funda Meric-Bernstam

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge