Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filip Kolář is active.

Publication


Featured researches published by Filip Kolář.


PLOS ONE | 2012

Bringing Together Evolution on Serpentine and Polyploidy: Spatiotemporal History of the Diploid- Tetraploid Complex of Knautia arvensis (Dipsacaceae)

Filip Kolář; Tomáš Fér; Milan Štech; Pavel M. Travnicek; Eva Dušková; Peter Schönswetter; Jan Suda

Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae), a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary ‘dead-ends’ but rather dynamic systems with a potential to further influence the surrounding populations, e.g., via independent polyplodization and hybridization. The complex eco-geographical pattern together with the incidence of both primary and secondary diploid-tetraploid contact zones makes K. arvensis a unique system for addressing general questions of polyploid research.


BMC Evolutionary Biology | 2014

Taming the wild: resolving the gene pools of non-model Arabidopsis lineages

Nora Hohmann; Roswitha Schmickl; Tzen Yuh Chiang; Magdalena Lučanová; Filip Kolář; Karol Marhold; Marcus A. Koch

BackgroundWild relatives in the genus Arabidopsis are recognized as useful model systems to study traits and evolutionary processes in outcrossing species, which are often difficult or even impossible to investigate in the selfing and annual Arabidopsis thaliana. However, Arabidopsis as a genus is littered with sub-species and ecotypes which make realizing the potential of these non-model Arabidopsis lineages problematic. There are relatively few evolutionary studies which comprehensively characterize the gene pools across all of the Arabidopsis supra-groups and hypothesized evolutionary lineages and none include sampling at a world-wide scale. Here we explore the gene pools of these various taxa using various molecular markers and cytological analyses.ResultsBased on ITS, microsatellite, chloroplast and nuclear DNA content data we demonstrate the presence of three major evolutionary groups broadly characterized as A. lyrata group, A. halleri group and A. arenosa group. All are composed of further species and sub-species forming larger aggregates. Depending on the resolution of the marker, a few closely related taxa such as A. pedemontana, A. cebennensis and A. croatica are also clearly distinct evolutionary lineages. ITS sequences and a population-based screen based on microsatellites were highly concordant. The major gene pools identified by ITS sequences were also significantly differentiated by their homoploid nuclear DNA content estimated by flow cytometry. The chloroplast genome provided less resolution than the nuclear data, and it remains unclear whether the extensive haplotype sharing apparent between taxa results from gene flow or incomplete lineage sorting in this relatively young group of species with Pleistocene origins.ConclusionsOur study provides a comprehensive overview of the genetic variation within and among the various taxa of the genus Arabidopsis. The resolved gene pools and evolutionary lineages will set the framework for future comparative studies on genetic diversity. Extensive population-based phylogeographic studies will also be required, however, in particular for A. arenosa and their affiliated taxa and cytotypes.


Annals of Botany | 2013

Diversity and endemism in deglaciated areas: ploidy, relative genome size and niche differentiation in the Galium pusillum complex (Rubiaceae) in Northern and Central Europe.

Filip Kolář; Magdalena Lučanová; Petr Vít; Tomáš Urfus; Jindřich Chrtek; Tomáš Fér; Friedrich Ehrendorfer; Jan Suda

BACKGROUND AND AIMS Plants endemic to areas covered by ice sheets during the last glaciation represent paradigmatic examples of rapid speciation in changing environments, yet very few systems outside the harsh arctic zone have been comprehensively investigated so far. The Galium pusillum aggregate (Rubiaceae) is a challenging species complex that exhibits a marked differentiation in boreal parts of Northern Europe. As a first step towards understanding its evolutionary history in deglaciated regions, this study assesses cytological variation and ecological preferences of the northern endemics and compares the results with corresponding data for species occurring in neighbouring unglaciated parts of Central and Western Europe. METHODS DNA flow cytometry was used together with confirmatory chromosome counts to determine ploidy levels and relative genome sizes in 1158 individuals from 181 populations. A formalized analysis of habitat preferences was applied to explore niche differentiation among species and ploidy levels. KEY RESULTS The G. pusillum complex evolved at diploid and tetraploid levels in Northern Europe, in contrast to the high-polyploid evolution of most other northern endemics. A high level of eco-geographic segregation was observed between different species (particularly along gradients of soil pH and competition) which is unusual for plants in deglaciated areas and most probably contributes to maintaining species integrity. Relative monoploid DNA contents of the species from previously glaciated regions were significantly lower than those of their counterparts from mostly unglaciated Central Europe, suggesting independent evolutionary histories. CONCLUSIONS The aggregate of G. pusillum in Northern Europe represents an exceptional case with a geographically vicariant and ecologically distinct diploid/tetraploid species endemic to formerly glaciated areas. The high level of interspecific differentiation substantially widens our perception of the evolutionary dynamics and speciation rates in the dramatically changing environments of Northern Europe.


Molecular Ecology | 2016

Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa.

Filip Kolář; Gabriela Fuxová; Eliška Záveská; Atsushi J. Nagano; Lucie Hyklová; Magdalena Lučanová; Hiroshi Kudoh; Karol Marhold

Quaternary climatic oscillations profoundly impacted temperate biodiversity. For many diverse yet undersampled areas, however, the consequences of this impact are still poorly known. In Europe, particular uncertainty surrounds the role of Balkans, a major hotspot of European diversity, in postglacial recolonization of more northerly areas, and the Carpathians, a debatable candidate for a northern ‘cryptic’ glacial refugium. Using genome‐wide SNPs and microsatellites, we examined how the interplay of historical processes and niche shifts structured genetic diversity of diploid Arabidopsis arenosa, a little‐known member of the plant model genus that occupies a wide niche range from sea level to alpine peaks across eastern temperate Europe. While the northern Balkans hosted one isolated endemic lineage, most of the genetic diversity was concentrated further north in the Pannonian Basin and the Carpathians, where it likely survived the last glaciation in northern refugia. Finally, a distinct postglacial environment in northern Europe was colonized by populations of admixed origin from the two Carpathian lineages. Niche differentiation along altitude‐related bioclimatic gradients was the main trend in the phylogeny of A. arenosa. The most prominent niche shifts, however, characterized genetically only slightly divergent populations that expanded into narrowly defined alpine and northern coastal postglacial environments. Our study highlights the role of eastern central European mountains not only as refugia for unique temperate diversity but also sources for postglacial expansion into novel high‐altitude and high‐latitude niches. Knowledge of distinct genetic substructure of diploid A. arenosa also opens new opportunities for follow‐up studies of this emerging model of evolutionary biology.


PLOS ONE | 2014

Continuous morphological variation correlated with genome size indicates frequent introgressive hybridization among Diphasiastrum species (Lycopodiaceae) in Central Europe.

Kristýna Hanušová; Libor Ekrt; Petr Vít; Filip Kolář; Tomáš Urfus

Introgressive hybridization is an important evolutionary process frequently contributing to diversification and speciation of angiosperms. Its extent in other groups of land plants has only rarely been studied, however. We therefore examined the levels of introgression in the genus Diphasiastrum, a taxonomically challenging group of Lycopodiophytes, using flow cytometry and numerical and geometric morphometric analyses. Patterns of morphological and cytological variation were evaluated in an extensive dataset of 561 individuals from 57 populations of six taxa from Central Europe, the region with the largest known taxonomic complexity. In addition, genome size values of 63 individuals from Northern Europe were acquired for comparative purposes. Within Central European populations, we detected a continuous pattern in both morphological variation and genome size (strongly correlated together) suggesting extensive levels of interspecific gene flow within this region, including several large hybrid swarm populations. The secondary character of habitats of Central European hybrid swarm populations suggests that man-made landscape changes might have enhanced unnatural contact of species, resulting in extensive hybridization within this area. On the contrary, a distinct pattern of genome size variation among individuals from other parts of Europe indicates that pure populations prevail outside Central Europe. All in all, introgressive hybridization among Diphasiastrum species in Central Europe represents a unique case of extensive interspecific gene flow among spore producing vascular plants that cause serious complications of taxa delimitation.


Chromosome Research | 2012

Glycerol-treated nuclear suspensions--an efficient preservation method for flow cytometric analysis of plant samples.

Filip Kolář; Magdalena Lučanová; Jakub Těšitel; João Loureiro; Jan Suda

Flow cytometry (FCM) has been widely used in plant science to determine the amount of nuclear DNA, either in absolute units or in relative terms, as an indicator of ploidy. The requirement for fresh material in some applications, however, limits the value of FCM in field research, including plant biosystematics, ecology and population biology. Dried plant samples have proven to be a suitable alternative in some cases (large-scale ploidy screening) although tissue dehydration is often associated with a decrease in the quality of FCM analysis. The present study tested, using time-scale laboratory and in situ field experiments, the applicability of glycerol-treated nuclear suspension for DNA flow cytometry. We demonstrate that plant nuclei preserved in ice-cold buffer + glycerol solution remain intact for at least a few weeks and provide estimates of nuclear DNA content that are highly comparable and of similar quality to those obtained from fresh tissue. The protocol is compatible with both DAPI and propidium iodide staining, and allows not only the determination of ploidy level but also genome size in absolute units. Despite its higher laboriousness, glycerol-preserved nuclei apparently represent the most reliable way of sample preservation for genome size research. We assume that the protocol will provide a vital alternative to other preservation methods, especially when stringent criteria on the quality of FCM analysis are required.


Trends in Plant Science | 2017

Mixed-Ploidy Species: Progress and Opportunities in Polyploid Research

Filip Kolář; Martin Čertner; Jan Suda; Peter Schönswetter; Brian C. Husband

Mixed-ploidy species harbor a unique form of genomic and phenotypic variation that influences ecological interactions, facilitates genetic divergence, and offers insights into the mechanisms of polyploid evolution. However, there have been few attempts to synthesize this literature. We review here research on the cytotype distribution, diversity, and dynamics of intensively studied mixed-ploidy species and consider the implications for understanding mechanisms of polyploidization such as cytotype formation, establishment, coexistence, and post-polyploid divergence. In general, mixed-ploidy species are unevenly represented among families: they exhibit high cytotype diversity, often within populations, and frequently comprise rare and odd-numbered ploidies. Odd-ploidies often occur in association with asexuality. We highlight research hypotheses and opportunities that take advantage of the unique properties of ploidy variation.


Plant and Soil | 2014

Serpentine ecotypic differentiation in a polyploid plant complex: shared tolerance to Mg and Ni stress among di- and tetraploid serpentine populations of Knautia arvensis (Dipsacaceae)

Filip Kolář; Markéta Dortová; Jan Lepš; Miloslav Pouzar; Anna Krejčová; Milan Štech

Background and aimsSerpentine soils impose limits on plant growth and survival and thus provide an ideal model for studying plant adaptation under environmental stress. Despite the increasing amount of data on serpentine ecotypic differentiation, no study has assessed the potential role of polyploidy. We tested for links between polyploidy and the response to serpentine stress in Knautia arvensis, a diploid-tetraploid, edaphically differentiated complex.MethodsVariation in growth, biomass yield and tissue Mg and Ni accumulation in response to high Mg and Ni concentrations were experimentally tested using hydroponic cultivation of seedlings from eight populations of different ploidy and edaphic origin.ResultsRegardless of ploidy level, serpentine populations exhibited higher tolerance to both Mg and Ni stress than their non-serpentine counterparts, suggesting an adaptive character of these traits in K. arvensis. The effect of ploidy was rather weak and confined to a slightly better response of serpentine tetraploids to Mg stress and to higher biomass yields in tetraploids from both soil types.ConclusionsThe similar response of diploid and tetraploid serpentine populations to edaphic stress corresponded with their previously described genetic proximity. This suggests that serpentine tolerance might have been transmitted during the local autopolyploid origin of serpentine tetraploids.


Molecular Ecology | 2016

Niche shifts and range expansions along cordilleras drove diversification in a high-elevation endemic plant genus in the tropical Andes.

Filip Kolář; Eva Dušková; Petr Sklenář

The tropical Andes represent one of the worlds biodiversity hot spots, but the evolutionary drivers generating their striking species diversity still remain poorly understood. In the treeless high‐elevation Andean environments, Pleistocene glacial oscillations and niche differentiation are frequently hypothesized diversification mechanisms; however, sufficiently densely sampled population genetic data supporting this are still lacking. Here, we reconstruct the evolutionary history of Loricaria (Asteraceae), a plant genus endemic to the Andean treeless alpine zone, based on comprehensive population‐level sampling of 289 individuals from 67 populations across the entire distribution ranges of its northern Andean species. Partly incongruent AFLP and plastid DNA markers reveal that the distinct genetic structure was shaped by a complex interplay of biogeography (spread along and across the cordilleras), history (Pleistocene glacial oscillations) and local ecological conditions. While plastid variation documents an early split or colonization of the northern Andes by at least two lineages, one of which further diversified, a major split in the AFLP data correlate with altitudinal ecological differentiation. This suggests that niche shifts may be important drivers of Andean diversification not only in forest–alpine transitions, but also within the treeless alpine zone itself. The patterns of genetic differentiation at the intraspecific level reject the hypothesized separation in spatially isolated cordilleras and instead suggest extensive gene flow among populations from distinct mountain chains. Our study highlights that leveraging highly variable markers against extensive population‐level sampling is a promising approach to address mechanisms of rapid species diversifications.


Molecular Ecology | 2015

The origin of unique diversity in deglaciated areas: traces of Pleistocene processes in north-European endemics from the Galium pusillum polyploid complex (Rubiaceae).

Filip Kolář; Soňa Píšová; Eliška Záveská; Tomáš Fér; Martin Weiser; Friedrich Ehrendorfer; Jan Suda

The role of glacial oscillations in shaping plant diversity has been only rarely addressed in endemics of formerly glaciated areas. The Galium pusillum group represents a rare example of an ecologically diverse and ploidy‐variable species complex that exhibits substantial diversity in deglaciated northern Europe. Using AFLP and plastid and nuclear DNA sequences of 67 populations from northern, central, and western Europe with known ecological preferences, we elucidate the evolutionary history of lineages restricted to deglaciated areas and identify the eco‐geographic partitioning of their genetic variation. We reveal three distinct endemic northern lineages: (i) diploids from southern Sweden + the British Isles, (ii) tetraploids from southern Scandinavia and the British Isles that show signs of ancient hybridization between the first lineage and populations from unglaciated central Europe, and (iii) tetraploids from Iceland + central Norway. Available evidence supports a stepwise differentiation of these three lineages that started at least before the last glacial maximum by processes of genome duplication, interlineage hybridization and/or allopatric evolution in distinct periglacial refugia. We reject the hypothesis of more recent postglacial speciation. Ecological characteristics of the populations under study only partly reflect genetic variation and suggest broad niches of postglacial colonizers. Despite their largely allopatric modern distributions, the north‐European lineages of the G. pusillum group do not show signs of rapid postglacial divergence, in contrast to most other northern endemics. Our study suggests that plants inhabiting deglaciated areas outside the Arctic may exhibit very different evolutionary histories compared with their more thoroughly investigated high‐arctic counterparts.

Collaboration


Dive into the Filip Kolář's collaboration.

Top Co-Authors

Avatar

Jan Suda

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Magdalena Lučanová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Karol Marhold

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Martin Čertner

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Tomáš Fér

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Eva Dušková

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katya Romoleroux

Pontificia Universidad Católica del Ecuador

View shared research outputs
Researchain Logo
Decentralizing Knowledge