Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filip Lardon is active.

Publication


Featured researches published by Filip Lardon.


PLOS ONE | 2012

Comparative Analysis of Dynamic Cell Viability, Migration and Invasion Assessments by Novel Real-Time Technology and Classic Endpoint Assays

Ridha Limame; An Wouters; Bea Pauwels; Erik Fransen; Marc Peeters; Filip Lardon; Olivier De Wever; Patrick Pauwels

Background Cell viability and motility comprise ubiquitous mechanisms involved in a variety of (patho)biological processes including cancer. We report a technical comparative analysis of the novel impedance-based xCELLigence Real-Time Cell Analysis detection platform, with conventional label-based endpoint methods, hereby indicating performance characteristics and correlating dynamic observations of cell proliferation, cytotoxicity, migration and invasion on cancer cells in highly standardized experimental conditions. Methodology/Principal Findings Dynamic high-resolution assessments of proliferation, cytotoxicity and migration were performed using xCELLigence technology on the MDA-MB-231 (breast cancer) and A549 (lung cancer) cell lines. Proliferation kinetics were compared with the Sulforhodamine B (SRB) assay in a series of four cell concentrations, yielding fair to good correlations (Spearmans Rho 0.688 to 0.964). Cytotoxic action by paclitaxel (0–100 nM) correlated well with SRB (Rho>0.95) with similar IC50 values. Reference cell migration experiments were performed using Transwell plates and correlated by pixel area calculation of crystal violet-stained membranes (Rho 0.90) and optical density (OD) measurement of extracted dye (Rho>0.95). Invasion was observed on MDA-MB-231 cells alone using Matrigel-coated Transwells as standard reference method and correlated by OD reading for two Matrigel densities (Rho>0.95). Variance component analysis revealed increased variances associated with impedance-based detection of migration and invasion, potentially caused by the sensitive nature of this method. Conclusions/Significance The xCELLigence RTCA technology provides an accurate platform for non-invasive detection of cell viability and motility. The strong correlations with conventional methods imply a similar observation of cell behavior and interchangeability with other systems, illustrated by the highly correlating kinetic invasion profiles on different platforms applying only adapted matrix surface densities. The increased sensitivity however implies standardized experimental conditions to minimize technical-induced variance.


British Journal of Cancer | 1999

Prospective study of intratumoral microvessel density, p53 expression and survival in colorectal cancer

P. Vermeulen; G. Van den Eynden; P. Huget; Gerda Goovaerts; Joost Weyler; Filip Lardon; E. Van Marck; G. Hubens; L. Dirix

SummaryAdjuvant treatment of patients with colorectal cancer is hampered by a lack of reliable prognostic factors in addition to the clinicopathological staging system. A poorly defined but considerable fraction of Astler–Coller stage B patients will experience tumour recurrence, and some of the stage C patients will probably survive for a prolonged time after surgery without adjuvant treatment. Assessing parameters related to tumour angiogenesis has provided valuable prognostic information in different tumour types. The formation of new microvessels is part of the malignant phenotype in the majority of tumours. Alterations in tumour-suppressor genes, such as the p53 gene, or oncogenes, such as the ras gene, have been found to be responsible for changing the local balance of pro- and antiangiogenic factors in favour of the former. In this prospective study, intratumoral microvessel density (IMD) was assessed by immunostaining tissue sections for CD31 and counting individual microvessels in selected and highly vascular regions in specimens of 145 colorectal cancer patients. p53 protein overexpression was semiquantitatively determined after immunohistochemistry. In both uni- and multivariate analysis, high IMD was significantly associated with shorter survival in the patients undergoing surgery with curative intent (Astler–Coller stages A–C). p53 added prognostic power to IMD, both in Astler–Coller stage B and stage C patients. An association between IMD and mode of metastasis was also noted. High IMD was strongly associated with the incidence of haematogenous metastasis during follow-up, but not with the presence of lymphogenic metastasis observed at surgery. This study confirms the results of previous retrospective analyses of IMD and survival in colorectal cancer and warrants a clinical validation by randomizing stage B tumour patients with high IMD and p53 overexpression between adjuvant treatment or not.


Oncologist | 2010

A Review of the Most Promising Biomarkers in Colorectal Cancer: One Step Closer to Targeted Therapy

Marc Baay; Pol Specenier; Filip Lardon; Jan B. Vermorken

Rapidly growing insights into the molecular biology of colorectal cancer (CRC) and recent developments in gene sequencing and molecular diagnostics have led to high expectations for the identification of molecular markers to be used in optimized and tailored treatment regimens. However, many of the published data on molecular biomarkers are contradictory in their findings and the current reality is that no molecular marker, other than the KRAS gene in the case of epidermal growth factor receptor (EGFR)- targeted therapy for metastatic disease, has made it into clinical practice. Many markers investigated suffer from technical shortcomings, resulting from lack of quantitative techniques to capture the impact of the molecular alteration. This understanding has recently led to the more comprehensive approaches of global gene expression profiling or genome-wide analysis to determine prognostic and predictive signatures in tumors. In this review, an update of the most recent data on promising biological prognostic and/or predictive markers, including microsatellite instability, epidermal growth factor receptor, KRAS, BRAF, CpG island methylator phenotype, cytotoxic T lymphocytes, forkhead box P3-positive T cells, receptor for hyaluronic acid-mediated motility, phosphatase and tensin homolog, and T-cell originated protein kinase, in patients with CRC is provided.


Gene Therapy | 1998

Nonviral transfection of distinct types of human dendritic cells: high-efficiency gene transfer by electroporation into hematopoietic progenitor- but not monocyte-derived dendritic cells

Vfi Van Tendeloo; H-W Snoeck; Filip Lardon; Guido Vanham; Griet Nijs; Marc Lenjou; Lydia Hendriks; C. Van Broeckhoven; Adriaan C. Moulijn; I. Rodrigus; P Verdonk; Van Bockstaele; Zwi N. Berneman

Human dendritic cells (DC) are highly professional antigen presenting cells for the priming of naive cytotoxic T cells. Gene transfer in DC would be a useful strategy to load DC with relevant de novo synthesized antigens for immunotherapeutical purposes. As a first step towards a DC-based gene therapy, we examined the efficiency of nonviral transfection in different types of cultured human dendritic cells with a humanized red-shifted green fluorescent protein reporter gene. Plasmid DNA transfection by electroporation or lipofection was used to transfect CD34+ progenitor cell-derived DC (PC-DC) and Langerhans’ cells (PC-LC), as well as monocyte-derived DC (Mo-DC). While lipofection was unsuccessful in all types of DC, we obtained high-efficiency gene transfer by electroporation in PC-LC (16%) and PC-DC (12%). In contrast, electroporation was strikingly less efficient in Mo-DC (⩽2%). The potent allostimulatory capacity of DC was still retained in electroporated PC-DC and PC-LC. In conclusion, electroporation of antigen expressing plasmid DNA is an efficient tool for nonviral gene transfer in PC-DC and PC-LC, but not in Mo-DC and could be useful for the development of DC-based tumor immunotherapy.


Immunology | 1997

Generation of dendritic cells from bone marrow progenitors using GM-CSF, TNF-alpha, and additional cytokines: antagonistic effects of IL-4 and IFN-gamma and selective involvement of TNF-alpha receptor-1.

Filip Lardon; H.-W. Snoeck; Zwi N. Berneman; Viggo Van Tendeloo; Griet Nijs; Marc Lenjou; Els Henckaerts; C. J. Boeckxtaens; P. Vandenabeele; L. L. Kestens; D. R. Van Bockstaele; Guido Vanham

We report the generation of dendritic cells (DC) starting from CD34+ bone marrow (BM) progenitor cells, using a two‐stage culture system in which, besides granulocyte–macrophage colony‐stimulating factor (GM‐CSF) and tumour necrosis factor‐α (TNF‐α), stem‐cell factor (SCF) was added during the first 5 days, while interleukin‐4 (IL‐4) and/or interferon‐γ (IFN‐γ) were added during the secondary culture period of 9 days. Addition of IL‐4 favoured the outgrowth of CD1a+, HLA‐DR+, CD4+, CD40+, CD80+ but CD14− cells with dendritic morphology and strong antigen‐presenting capacity. Addition of IFN‐γ selectively induced HLA‐DR and CD86 but did not up‐regulate CD1a expression or antigen‐presenting capacity of the differentiated cells. An antagonism between IL‐4 and IFN‐γ could further be confirmed in that, as compared with IL‐4 alone, the simultaneous addition of IL‐4 and IFN‐γ to GM‐CSF plus TNF‐α during maturation reduced both the phenotypical (CD1a, CD4, CD40) and functional characteristics of DC. Using receptor‐specific TNF‐α mutants, we investigated the relative involvement of TNF‐α receptors R1 and R2 in the generation of DC. The induction of CD1a and HLA‐DR, as well as the increase in allostimulatory capacity were dependent on TNF‐R1 triggering, whereas triggering through TNF‐R2 had no measurable effect. We conclude first, that the expansion of DC from BM progenitors could most effectively be enhanced in a two‐stage culture assay using SCF, GM‐CSF, TNF‐α and IL‐4; second, that the effect of TNF‐α in DC generation involves signalling via the TNF‐R1 receptor; and third, that IFN‐γ counteracts some of the effects of IL‐4 in DC generation.


Clinical & Developmental Immunology | 2011

Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

Marc Baay; Anja Brouwer; Patrick Pauwels; Marc Peeters; Filip Lardon

Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention.


Leukemia | 2002

mRNA-electroporated mature dendritic cells retain transgene expression, phenotypical properties and stimulatory capacity after cryopreservation

Peter Ponsaerts; Viggo Van Tendeloo; Nathalie Cools; A Van Driessche; Filip Lardon; Griet Nijs; Marc Lenjou; G. Mertens; C. Van Broeckhoven; D. R. Van Bockstaele; Z. N. Berneman

Genetically modified dendritic cells (DC) are increasingly used in vitro to activate cytotoxic T lymphocyte (CTL) immune responses. Because T cell activation protocols consist of multiple restimulation cycles of peripheral blood lymphocytes with antigen-loaded mature DC, continuous generation of DC is needed throughout the experiment. Therefore, cryopreservation of DC loaded with antigen is a valuable alternative for weekly generation and modification of DC. Recently, we described an antigen loading method for DC based on electroporation of defined tumor antigen mRNA. In this study, we demonstrate that mRNA-electroporated DC can efficiently be prepared for cryopreservation. Using an optimized maturation and freezing protocol after mRNA electroporation, we obtained high transgene-expressing viable mature DC. In addition, we showed that these modified cryopreserved DC retain stimulatory capacity in an influenza model system. Therefore, cryopreservation of mature mRNA-electroporated DC is a useful method for continuous availability of antigen-loaded DC throughout T cell activation experiments.


International Journal of Radiation Oncology Biology Physics | 2003

Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro

Bea Pauwels; Annelies E. C. Korst; Greet G.O. Pattyn; Hilde A.J. Lambrechts; Dirk R. Van Bockstaele; Katrien Vermeulen; Marc Lenjou; Christel M. J. De Pooter; Jan B. Vermorken; Filip Lardon

PURPOSE The mechanism of radiosensitization by gemcitabine is still unclear. It has been hypothesized that the accumulation of cells in early S phase may play a role in enhancing radiosensitivity. METHODS AND MATERIALS The schedule dependency of the radiosensitizing effect was studied in ECV304, human bladder cancer cells, and H292, human lung cancer cells, by varying the incubation time and time interval between gemcitabine and radiation treatment. To determine the role of cell cycle perturbations in the radiosensitization, the influence of gemcitabine on the cell cycle at the moment of radiation was investigated by flow cytometry. RESULTS The radiosensitizing effect increased with a longer incubation period: Dose enhancement factors varied from 1.30 to 2.82 in ECV304 and from 1.04 to 1.78 in H292 after treatment during 8-32 h, respectively. Radiosensitization decreased with an increasing interval: Dose enhancement factors varied from 2.26 to 1.49 in ECV304 and from 1.45 to 1.11 in H292 after an interval 0-24 h, respectively. Cells were blocked in the early S phase of the cell cycle by gemcitabine. The highest percentage S-phase cells was observed after treatment with the schedules that resulted in the highest radiosensitizing effect. CONCLUSIONS We observed a clear schedule-dependent radiosensitization by gemcitabine. Our findings demonstrated a correlation between gemcitabine-induced early S-phase block and the radiosensitizing effect.


FEBS Letters | 1998

Effect of indomethacin on cell cycle dependent cyclic AMP fluxes in tobacco BY-2 cells

Hashimul Ehsan; Jean-Philippe Reichheld; Luc Roef; Erwin Witters; Filip Lardon; Dirk R. Van Bockstaele; Marc Van Montagu; Dirk Inzé; Harry Van Onckelen

The evolution of adenosine 3′,5′‐cyclic monophosphate (cAMP) levels was investigated in synchronised tobacco BY‐2 cells by virtue of a method based on immunoaffinity purification and analysis on electrospray tandem mass spectrometry. A transient peak in cAMP content was observed during the S and G1 phases of the cell cycle. Application of the prostaglandin inhibiting drug indomethacin at early S phase resulted in the loss of the cAMP peak in S phase and inhibited mitotic division. This inhibition of cAMP accumulation suggests the presence of a prostaglandin‐dependent adenylyl cyclase activity, analogous to animal cyclases. A potential role for cAMP during the plant cell cycle is postulated.


Journal of Biological Chemistry | 1998

Decrease in nucleoside diphosphate kinase (NDPK/nm23) expression during hematopoietic maturation

Roel Willems; Dirk R. Van Bockstaele; Filip Lardon; Marc Lenjou; Griet Nijs; Hans-Willem Snoeck; Zwi N. Berneman; Herman Slegers

The nucleoside diphosphate kinase (NDPK/nm23) isoforms H1 and H2 were localized in hematopoietic tissues. Flow cytometric analysis and enzymatic assays were used to quantify the intracellular and extracellular concentrations of NDPK. Bone marrow CD34+ progenitors contained the highest intracellular levels of both nm23-H1 and nm23-H2. Lower levels were measured in more mature bone marrow cells, whereas peripheral blood leukocytes had the lowest expression of nm23. These data suggest a function of NDPK in early hematopoiesis and a down-regulation of NDPK upon differentiation. In addition, an up-regulation of nm23 expression was observed in lymphocytes after induction of proliferation with phytohemagglutinin. Multiparameter flow cytometry demonstrated that this up-regulation occurred during the G0/G1-transition. Flow cytometric analysis also revealed a weak surface expression of nm23 on a number of hematopoietic cell lines, which was not detected on normal hematopoietic cells. Our data also demonstrated the presence of NDPK in human plasma, probably due to a limited in vivo lysis of red blood cells.

Collaboration


Dive into the Filip Lardon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Baay

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge