Filip Topić
University of Jyväskylä
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Filip Topić.
Chemistry: A European Journal | 2013
Tanya K. Ronson; Chandan Giri; N. Kodiah Beyeh; Antti Minkkinen; Filip Topić; Julian J. Holstein; Kari Rissanen; Jonathan R. Nitschke
Subtle differences in metal-ligand bond lengths between a series of [M(4)L(6)](4-) tetrahedral cages, where M = Fe(II), Co(II), or Ni(II), were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single-crystal X-ray diffraction was used to study the solid-state complexes of the iron(II) and nickel(II) cages.
Angewandte Chemie | 2014
Christoph Klein; Christoph Gütz; Maximilian Bogner; Filip Topić; Kari Rissanen; Arne Lützen
An enantiomerically pure BINOL-based bis(3-pyridyl) ligand 1 assembles into a homochiral [Pd4(1)8] complex upon coordination to tetravalent Pd(II) ions. The formation of this aggregate is templated by two tetrafluoroborate counterions that are encapsulated in two peripheral cavities. The resulting structure is a new structural motif for this kind of metallosupramolecular assemblies that arranges the palladium ions in a distorted tetrahedral fashion and forces ligand 1 to adopt two different conformations. Both phenomena are unique and cause an overall three-dimensional structure that has another confined, chiral, and hydrophilic central cavity.
Chemical Science | 2014
Andrea Brugnara; Filip Topić; Kari Rissanen; Aurélien de la Lande; Benoit Colasson; Olivia Reinaud
The ability of a water-soluble pentacationic calix[6]arene-based CuII complex to bind anions in water has been explored. Quite remarkably, the complex exhibits strong and selective fluoride binding in the pH range of 6–7. The binding constant at pH 5.9 was evaluated to be 85 000 M−1, which is one of the highest values ever reported for a fluoride probe in water and at this pH. The complex also binds chloride ions, but 1000 times less efficiently. The combination of the calix[6]arene hydrophobic cavity with the CuII complex, presenting its labile site in the endo position, is the reason for the selective recognition process. The single crystal X-ray structure of the organo-soluble parent complex revealed a strong interaction between the coordinated fluoride anion and a hosted CHCl3 solvent molecule. Molecular modeling applying an aqueous environment suggests that a water cluster, [F·H2O·H2O]−, is the species recognized by the host, which provides an appropriate environment for the stabilization of such a hydrated fluoride guest/species.
Journal of the American Chemical Society | 2016
Filip Topić; Kari Rissanen
A carefully designed strategy is presented for the construction of ternary cocrystals, based on the orthogonality of two supramolecular interaction modes: hydrogen bonding between crown ethers and thioureas and the halogen bonding between thioureas and perfluorohalocarbons. Tested on a set comprising two crown ethers, two thioureas and five halogen bond donors, the strategy resulted in a high, 75% success rate, with 15/20 component combinations yielding at least one cocrystal. Crystal structure analysis revealed the interplay between the hydrogen and halogen bonding motifs, also shedding light on the variables affecting their formation.
Beilstein Journal of Organic Chemistry | 2014
Rainer Hovorka; Sophie Hytteballe; Torsten Piehler; Georg Meyer-Eppler; Filip Topić; Kari Rissanen; Marianne Engeser; Arne Lützen
Summary Two new 9,9’-spirobifluorene-based bis(4-pyridines) were synthesised in enantiopure and one also in racemic form. These ligands act as concave templates and form metallosupramolecular [(dppp)2M2L2] rhombi with cis-protected [(dppp)Pd]2+ and [(dppp)Pt]2+ ions. The self-assembly process of the racemic ligand preferably occurs in a narcissistic self-recognising manner. Hence, a mixture of all three possible stereoisomers [(dppp)2M2{(R)-L}2](OTf)4, [(dppp)2M2{(S)-L}2](OTf)4, and [(dppp)2M2{(R)-L}{(S)-L}](OTf)4 was obtained in an approximate 1.5:1.5:1 ratio which corresponds to an amplification of the homochiral assemblies by a factor of approximately three as evidenced by NMR spectroscopy and mass spectrometry. The racemic homochiral assemblies could also be characterised by single crystal X-ray diffraction.
Inorganic Chemistry | 2015
Pia Bonakdarzadeh; Filip Topić; Elina Kalenius; Sandip Bhowmik; Sota Sato; Michael Groessl; Richard Knochenmuss; Kari Rissanen
A novel modular approach to electron-deficient and electron-rich M6L4 cages is presented. From the same starting compound, via a minor modulation of the synthesis route, two C3-symmetric ligands L1 and L2 with different electronic properties are obtained in good yield. The trifluoro-triethynylbenzene-based ligand L1 is more electron-deficient than the well-known 2,4,6-tri(4-pyridyl)-1,3,5-triazine, while the trimethoxy-triethynylbenzene-based ligand L2 is more electron-rich than the corresponding benzene analogue. Complexation of the ligands with cis-protected square-planar [(dppp)Pt(OTf)2] or [(dppp)Pd(OTf)2] corner-complexes yields two electron-deficient (1a and 1b) and two electron-rich (2a and 2b) M6L4 cages. The single crystal X-ray diffraction study of 1a and 2a confirms the expected octahedral shape with a ca. 2000 Å(3) cavity and ca. 11 Å wide apertures. The crystallographically determined diameters of 1a and 2a are 3.7 and 3.6 nm, respectively. The hydrodynamic diameters obtained from the DOSY NMR in CDCl3:CD3OD (4:1), and diameters calculated from collision cross sections (CCS) acquired by ion-mobility mass spectrometry (IM-MS) were for all four cages similar. In solution, the cage structures have diameters between 3.3 to 3.6 nm, while in the gas phase the corresponding diameters varied between 3.4 to 3.6 nm. In addition to the structural information the relative stabilities of the Pt6L4 and Pd6L4 cages were studied in the gas phase by collision-induced dissociation (CID) experiments, and the photophysical properties of the ligands L1 and L2 and cages 1a, 1b, 2a, and 2b were studied by UV-vis and fluorescence spectroscopy.
Inorganic Chemistry | 2017
Matthias Hardy; Niklas Struch; Filip Topić; Gregor Schnakenburg; Kari Rissanen; Arne Lützen
Two novel heterobimetallic complexes, a trigonal-bipyramidal and a cubic one, have been synthesized and characterized using the same C3-symmetric metalloligand, prepared by a simple subcomponent self-assembly strategy. Adopting the molecular library approach, we chose a mononuclear, preorganized iron(II) complex as the metalloligand capable of self-assembly into a trigonal-bipyramidal or a cubic aggregate upon coordination to cis-protected C2-symmetric palladium(II) or unprotected tetravalent palladium(II) ions, respectively. The trigonal-bipyramidal complex was characterized by NMR and UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction. The cubic structure was characterized by NMR and UV-vis spectroscopy and ESI-MS.
Angewandte Chemie | 2017
Anniina Kiesilä; Lauri Kivijärvi; Ngong Kodiah Beyeh; Jani O. Moilanen; Michael Groessl; Tatiana Rothe; Sven Götz; Filip Topić; Kari Rissanen; Arne Lützen; Elina Kalenius
The formation of complexes between hexafluorophosphate (PF6- ) and tetraisobutyloctahydroxypyridine[4]arene has been thoroughly studied in the gas phase (ESI-QTOF-MS, IM-MS, DFT calculations), in the solid state (X-ray crystallography), and in chloroform solution (1 H, 19 F, and DOSY NMR spectroscopy). In all states of matter, simultaneous endo complexation of solvent molecules and exo complexation of a PF6- anion within a pyridine[4]arene dimer was observed. While similar ternary complexes are often observed in the solid state, this is a unique example of such behavior in the gas phase.
Inorganic Chemistry | 2018
Niklas Struch; Filip Topić; Gregor Schnakenburg; Kari Rissanen; Arne Lützen
Metallosupramolecular systems heavily rely on the correct choice of ligands to obtain materials with desired properties. Engaging this problem, we present three ligand systems and six of their mono- and dinuclear complexes, based on the subcomponent self-assembly approach using electron-deficient pyridylcarbaldehyde building blocks. The properties are examined in solution by NMR and UV-vis spectroscopy and CV measurements as well as in solid state by single crystal X-ray diffraction analysis. Ultimately, the choice of ligands allows for fine-tuning of the electronic properties of the metal centers, complex-to-complex transformations, as well as establishing distinct anion-π-interaction motifs.
CrystEngComm | 2017
Filip Topić; Rakesh Puttreddy; J. Mikko Rautiainen; Heikki M. Tuononen; Kari Rissanen
The X-ray structures of the first co-crystals where the three oxygen lone pairs in N-oxides are fully utilized for tridentate C–I⋯O−–N+ halogen bonding with 1,ω-diiodoperfluoroalkanes are reported, studied computationally, and compared with the corresponding silver(I) N-oxide complexes.