Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filippo Cona is active.

Publication


Featured researches published by Filippo Cona.


NeuroImage | 2011

A neural mass model of interconnected regions simulates rhythm propagation observed via TMS-EEG

Filippo Cona; Melissa Zavaglia; Marcello Massimini; Mario Rosanova; Mauro Ursino

Knowledge of cortical rhythms represents an important aspect of modern neuroscience, to understand how the brain realizes its functions. Recent data suggest that different regions in the brain may exhibit distinct electroencephalogram (EEG) rhythms when perturbed by Transcranial Magnetic Stimulation (TMS) and that these rhythms can change due to the connectivity among regions. In this context, in silico simulations may help the validation of these hypotheses that would be difficult to be verified in vivo. Neural mass models can be very useful to simulate specific aspects of electrical brain activity and, above all, to analyze and identify the overall frequency content of EEG in a cortical region of interest (ROI). In this work we implemented a model of connectivity among cortical regions to fit the impulse responses in three ROIs recorded during a series of TMS/EEG experiments performed in five subjects and using three different impulse intensities. In particular we investigated Brodmann Area (BA) 19 (occipital lobe), BA 7 (parietal lobe) and BA 6 (frontal lobe). Results show that the model can reproduce the natural rhythms of the three regions quite well, acting on a few internal parameters. Moreover, the model can explain most rhythm changes induced by stimulation of another region, and inter-subject variability, by estimating just a few long-range connectivity parameters among ROIs.


Computational Intelligence and Neuroscience | 2009

Changes in EEG power spectral density and cortical connectivity in healthy and tetraplegic patients during amotor imagery task

Filippo Cona; Melissa Zavaglia; Laura Astolfi; Fabio Babiloni; Mauro Ursino

Knowledge of brain connectivity is an important aspect of modern neuroscience, to understand how the brain realizes its functions. In this work, neural mass models including four groups of excitatory and inhibitory neurons are used to estimate the connectivity among three cortical regions of interests (ROIs) during a foot-movement task. Real data were obtained via high-resolution scalp EEGs on two populations: healthy volunteers and tetraplegic patients. A 3-shell Boundary Element Model of the head was used to estimate the cortical current density and to derive cortical EEGs in the three ROIs. The model assumes that each ROI can generate an intrinsic rhythm in the beta range, and receives rhythms in the alpha and gamma ranges from other two regions. Connectivity strengths among the ROIs were estimated by means of an original genetic algorithm that tries to minimize several cost functions of the difference between real and model power spectral densities. Results show that the stronger connections are those from the cingulate cortex to the primary and supplementary motor areas, thus emphasizing the pivotal role played by the CMA_L during the task. Tetraplegic patients exhibit higher connectivity strength on average, with significant statistical differences in some connections. The results are commented and virtues and limitations of the proposed method discussed.


International Journal of Neural Systems | 2013

A MULTI-LAYER NEURAL-MASS MODEL FOR LEARNING SEQUENCES USING THETA/GAMMA OSCILLATIONS

Filippo Cona; Mauro Ursino

A neural mass model for the memorization of sequences is presented. It exploits three layers of cortical columns that generate a theta/gamma rhythm. The first layer implements an auto-associative memory working in the theta range; the second segments objects in the gamma range; finally, the feedback interactions between the third and the second layers realize a hetero-associative memory for learning a sequence. After training with Hebbian and anti-Hebbian rules, the network recovers sequences and accounts for the phase-precession phenomenon.


Journal of Computational Neuroscience | 2014

A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep

Filippo Cona; M. Lacanna; Mauro Ursino

Cortico-thalamic interactions are known to play a pivotal role in many brain phenomena, including sleep, attention, memory consolidation and rhythm generation. Hence, simple mathematical models that can simulate the dialogue between the cortex and the thalamus, at a mesoscopic level, have a great cognitive value. In the present work we describe a neural mass model of a cortico-thalamic module, based on neurophysiological mechanisms. The model includes two thalamic populations (a thalamo-cortical relay cell population, TCR, and its related thalamic reticular nucleus, TRN), and a cortical column consisting of four connected populations (pyramidal neurons, excitatory interneurons, inhibitory interneurons with slow and fast kinetics). Moreover, thalamic neurons exhibit two firing modes: bursting and tonic. Finally, cortical synapses among pyramidal neurons incorporate a disfacilitation mechanism following prolonged activity. Simulations show that the model is able to mimic the different patterns of rhythmic activity in cortical and thalamic neurons (beta and alpha waves, spindles, delta waves, K-complexes, slow sleep waves) and their progressive changes from wakefulness to deep sleep, by just acting on modulatory inputs. Moreover, simulations performed by providing short sensory inputs to the TCR show that brain rhythms during sleep preserve the cortex from external perturbations, still allowing a high cortical activity necessary to drive synaptic plasticity and memory consolidation. In perspective, the present model may be used within larger cortico-thalamic networks, to gain a deeper understanding of mechanisms beneath synaptic changes during sleep, to investigate the specific role of brain rhythms, and to explore cortical synchronization achieved via thalamic influences.


BioMed Research International | 2013

A Neural Network Model Can Explain Ventriloquism Aftereffect and Its Generalization across Sound Frequencies

Elisa Magosso; Filippo Cona; Mauro Ursino

Exposure to synchronous but spatially disparate auditory and visual stimuli produces a perceptual shift of sound location towards the visual stimulus (ventriloquism effect). After adaptation to a ventriloquism situation, enduring sound shift is observed in the absence of the visual stimulus (ventriloquism aftereffect). Experimental studies report opposing results as to aftereffect generalization across sound frequencies varying from aftereffect being confined to the frequency used during adaptation to aftereffect generalizing across some octaves. Here, we present an extension of a model of visual-auditory interaction we previously developed. The new model is able to simulate the ventriloquism effect and, via Hebbian learning rules, the ventriloquism aftereffect and can be used to investigate aftereffect generalization across frequencies. The model includes auditory neurons coding both for the spatial and spectral features of the auditory stimuli and mimicking properties of biological auditory neurons. The model suggests that different extent of aftereffect generalization across frequencies can be obtained by changing the intensity of the auditory stimulus that induces different amounts of activation in the auditory layer. The model provides a coherent theoretical framework to explain the apparently contradictory results found in the literature. Model mechanisms and hypotheses are discussed in relation to neurophysiological and psychophysical data.


International Journal of Neural Systems | 2012

Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms.

Filippo Cona; Melissa Zavaglia; Mauro Ursino

Synchronization of neural activity in the gamma band, modulated by a slower theta rhythm, is assumed to play a significant role in binding and segmentation of multiple objects. In the present work, a recent neural mass model of a single cortical column is used to analyze the synaptic mechanisms which can warrant synchronization and desynchronization of cortical columns, during an autoassociation memory task. The model considers two distinct layers communicating via feedforward connections. The first layer receives the external input and works as an autoassociative network in the theta band, to recover a previously memorized object from incomplete information. The second realizes segmentation of different objects in the gamma band. To this end, units within both layers are connected with synapses trained on the basis of previous experience to store objects. The main model assumptions are: (i) recovery of incomplete objects is realized by excitatory synapses from pyramidal to pyramidal neurons in the same object; (ii) binding in the gamma range is realized by excitatory synapses from pyramidal neurons to fast inhibitory interneurons in the same object. These synapses (both at points i and ii) have a few ms dynamics and are trained with a Hebbian mechanism. (iii) Segmentation is realized with faster AMPA synapses, with rise times smaller than 1 ms, trained with an anti-Hebbian mechanism. Results show that the model, with the previous assumptions, can correctly reconstruct and segment three simultaneous objects, starting from incomplete knowledge. Segmentation of more objects is possible but requires an increased ratio between the theta and gamma periods.


Computational Intelligence and Neuroscience | 2010

A neural mass model to simulate different rhythms in a cortical region

Melissa Zavaglia; Filippo Cona; Mauro Ursino

An original neural mass model of a cortical region has been used to investigate the origin of EEG rhythms. The model consists of four interconnected neural populations: pyramidal cells, excitatory interneurons and inhibitory interneurons with slow and fast synaptic kinetics, GABAA, slow and GABAA,fast respectively. A new aspect, not present in previous versions, consists in the inclusion of a self-loop among GABAA,fast interneurons. The connectivity parameters among neural populations have been changed in order to reproduce different EEG rhythms. Moreover, two cortical regions have been connected by using different typologies of long range connections. Results show that the model of a single cortical region is able to simulate the occurrence of multiple power spectral density (PSD) peaks; in particular the new inhibitory loop seems to have a critical role in the activation in gamma (γ) band, in agreement with experimental studies. Moreover the effect of different kinds of connections between two regions has been investigated, suggesting that long range connections toward GABAA,fast interneurons have a major impact than connections toward pyramidal cells. The model can be of value to gain a deeper insight into mechanisms involved in the generation of γ rhythms and to provide better understanding of cortical EEG spectra.


Medical Engineering & Physics | 2014

An improved algorithm for the automatic detection and characterization of slow eye movements

Filippo Cona; Fabio Pizza; Federica Provini; Elisa Magosso

Slow eye movements (SEMs) are typical of drowsy wakefulness and light sleep. SEMs still lack of systematic physical characterization. We present a new algorithm, which substantially improves our previous one, for the automatic detection of SEMs from the electro-oculogram (EOG) and extraction of SEMs physical parameters. The algorithm utilizes discrete wavelet decomposition of the EOG to implement a Bayes classifier that identifies intervals of slow ocular activity; each slow activity interval is segmented into single SEMs via a template matching method. Parameters of amplitude, duration, velocity are automatically extracted from each detected SEM. The algorithm was trained and validated on sleep onsets and offsets of 20 EOG recordings visually inspected by an expert. Performances were assessed in terms of correctly identified slow activity epochs (sensitivity: 85.12%; specificity: 82.81%), correctly segmented single SEMs (89.08%), and time misalignment (0.49 s) between the automatically and visually identified SEMs. The algorithm proved reliable even in whole sleep (sensitivity: 83.40%; specificity: 72.08% in identifying slow activity epochs; correctly segmented SEMs: 93.24%; time misalignment: 0.49 s). The algorithm, being able to objectively characterize single SEMs, may be a valuable tool to improve knowledge of normal and pathological sleep.


Archive | 2015

“Acoustical Vision” in Patients with Visual Deficit: A Neural Network Study

Elisa Magosso; Federico Giovannini; Filippo Cona

Perception of external events relies on integration of different sensory information (multisensory integration). Multisensory integration is maximally beneficial when information from one sensory modality is impaired. Bimodal audiovisual stimulation has been shown to improve perception of visual events in patients with visual deficit due to a lesion in the primary visual cortex (hemianopia) or in higher-level fronto-parietal visual areas (neglect). Improvement was higher when auditory and visual stimuli were spatially coincident or at moderate spatial disparity, while no significant improvement was found at larger disparity. A neural network model, that includes the interaction between cortical areas and subcortical structures (the Superior Colliculus), is presented to investigate these phenomena in both kinds of patients. The model untangles the specific contribution of the circuits - spared by the lesion - that drive the emergence of visual perception under audiovisual stimulation, and interprets the dependence of the effect on audiovisual spatial disparity. The model extends our knowledge on the neural mechanisms subserving brain multisensory capabilities and how to take advantage of them for sensory loss compensation.


Journal of Computational Neuroscience | 2015

A neural mass model of place cell activity: theta phase precession, replay and imagination of never experienced paths

Filippo Cona; Mauro Ursino

Recent results on hippocampal place cells show that the replay of behavioral sequences does not simply reflect previously experienced trajectories, but may also occur in the reverse direction, or may even include never experienced paths. In order to elucidate the possible mechanisms at the basis of this phenomenon, we have developed a model of sequence learning. The present model consists of two layers of place cell units. Long-range connections among units implement heteroassociation between the two layers, trained with a temporal Hebb rule. The network was trained assuming that a virtual rat moves within a virtual maze. This training leads to the formation of bidirectional synapses between the two layers, i.e. synapses connecting a neuron both with its previous and subsequent element in the path. Subsequently, two distinct conditions were simulated with the trained network. During an exploratory phase, characterized by a similar consideration to the external environment and to the internal representation, the model simulates the occurrence of theta precession in the forward path and the temporal compression. During an imagination phase, when there is no consideration to the external location, the model produces trains of gamma oscillations, without the presence of a theta rhythm, and simulates the occurrence of both direct and reverse replay, and the imagination of never experienced paths. The new paths are built by combining bunches of previous trajectories. The main mechanisms at the basis of this behavior are explained in detail, and lines for future improvements (e.g., to simulate preplay) are discussed.

Collaboration


Dive into the Filippo Cona's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Astolfi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Babiloni

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge