Filiz Ateş
Boğaziçi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Filiz Ateş.
Journal of Electromyography and Kinesiology | 2015
Filiz Ateş; François Hug; Killian Bouillard; Marc Jubeau; Thomas Frappart; Mathieu Couade; Jeremy Bercoff; Antoine Nordez
Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (<60% of Maximal Voluntary Contraction, MVC). This measurement can therefore be used to estimate changes in individual muscle force. However, it is not known if this relationship remains valid for higher intensities. The aim of this study was to determine: (i) the relationship between muscle shear elastic modulus and muscle torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus.
Journal of Biomechanics | 2010
Can A. Yucesoy; Filiz Ateş; Umut Akgun; Mustafa Karahan
The goals of the present study were (1) to measure the previously unstudied isometric forces of activated human Gracilis (G) muscle as a function of knee joint angle and (2) to test whether length history effects are important also for human muscle. Experiments were conducted intraoperatively during anterior cruciate ligament (ACL) reconstruction surgery (n=8). Mean peak G muscle force, mean peak G tendon stress and mean optimal knee angle equals 178.5±270.3N, 24.4±20.6 MPa and 67.5±41.7 °, respectively. The substantial inter-subject variability found (e.g., peak G force ranges between 17.2 and 490.5 N) indicate that the contribution of the G muscle to knee flexion moment may vary considerably among subjects. Moreover, typical subject anthropometrics did not appear to provide a sound estimate of the peak G force: only a limited insignificant correlation was found between peak G force and subject mass as well as mid-thigh perimeter and no correlation was found between peak G force and thigh length. The functional joint range of motion for human G muscle was determined to be at least as wide as full knee extension to 120 ° of knee flexion. However; the portion of the knee angle-muscle force relationship operationalized is not unique but individual specific: our data suggest for most subjects that G muscle operates in both ascending and descending limbs of its length-force characteristics whereas, for the remainder of the subjects, its function is limited to the descending limb, exclusively. Previous activity of G muscle at high muscle length attained during collection of a complete set of knee angle-force data showed for the first time that such length history effects are important also for human muscles: a significant correlation was found between optimal knee angle and absolute value of % force change. Except for two of the subjects, G muscle force measured at low length was lower than that measured during collection of knee joint-force data (maximally by 42.3%).
Journal of Biomechanics | 2016
Ricardo J. Andrade; Antione Nordez; François Hug; Filiz Ateş; Michael W. Coppieters; Pedro Pezarat-Correia; Sandro R. Freitas
Peripheral nerves are exposed to mechanical stress during movement. However the in vivo mechanical properties of nerves remain largely unexplored. The primary aim of this study was to characterize the effect of passive dorsiflexion on sciatic nerve shear wave velocity (an index of stiffness) when the knee was in 90° flexion (knee 90°) or extended (knee 180°). The secondary aim was to determine the effect of five repeated dorsiflexions on the nerve shear wave velocity. Nine healthy participants were tested. The repeatability of sciatic nerve shear wave velocity was good for both knee 90° and knee 180° (ICCs ≥ 0.92, CVs ≤ 8.1%). The shear wave velocity of the sciatic nerve significantly increased (p<0.0001) during dorsiflexion when the knee was extended (knee 180°), but no changes were observed when the knee was flexed (90°). The shear wave velocity-angle relationship displayed a hysteresis for knee 180°. Although there was a tendency for the nerve shear wave velocity to decrease throughout the repetition of the five ankle dorsiflexions, the level of significance was not reached (p=0.055). These results demonstrate that the sciatic nerve stiffness can be non-invasively assessed during passive movements. In addition, the results highlight the importance of considering both the knee and the ankle position for clinical and biomechanical assessment of the sciatic nerve. This non-invasive technique offers new perspectives to provide new insights into nerve mechanics in both healthy and clinical populations (e.g., specific peripheral neuropathies).
PLOS ONE | 2015
Guillaume Le Sant; Filiz Ateş; Jean Louis Brasseur; Antoine Nordez
Introduction The mechanical properties of hamstring muscles are usually inferred from global passive torque/angle relationships, in combination with adjoining tissues crossing the joint investigated. Shear modulus measurement provides an estimate of changes in muscle-tendon stiffness and passive tension. This study aimed to assess the passive individual behavior of each hamstring muscle in different stretching positions using shear wave elastography. Methods/Results The muscle shear modulus of each hamstring muscle was measured during a standardized slow passive knee extension (PKE, 80% of maximal range of motion) on eighteen healthy male volunteers. Firstly, we assessed the reliability of the measurements. Results were good for semitendinosus (ST, CV: 8.9%-13.4%), semimembranosus (SM, CV: 10.3%-11.2%) and biceps femoris long-head (BF-lh, CV: 8.6%-13.3%), but not for biceps femoris short-head (BF-sh, CV: 20.3%-44.9%). Secondly, we investigated each reliable muscle in three stretch positions: 70°, 90° and 110° of hip flexion. The results showed different values of shear modulus for the same amount of perceived stretch, with the highest measurements in the high-flexed hip situation. Moreover, individual muscles displayed different values, with values increasing or BF-lh, SM and ST, respectively. The inter-subject variability was 35.3% for ST, 27.4% for SM and 30.2% for BF-lh. Conclusion This study showed that the hip needs to be high-flexed to efficiently tension the hamstrings, and reports a higher muscle-tendon stress tolerance at 110° of hip angle. In addition muscles have different passive behaviors, and future works will clarify if it can be linked with rate of injury.
Clinical Biomechanics | 2013
Filiz Ateş; Yener Temelli; Can A. Yucesoy
BACKGROUND To show whether mechanics of activated spastic muscle are representative of the functional deficiencies clearly apparent in the joints, our goal was to test the following hypotheses: (1) The muscles joint range of force exertion is narrow, and (2) high muscle forces are available at low muscle length. METHODS During remedial surgery, we measured the forces of the Gracilis muscle of spastic cerebral palsy patients (n=7, 10 limbs tested) as a function of knee joint angle from flexion (120°) to full extension (0°). FINDINGS The spastic Gracilis exerted non-zero forces for the entire knee angles studied. For four limbs, the peak force was exerted at the highest length. For the remainder limbs, the closest knee angle of peak force exertion to 120° was 66°. Maximally 79.1%, and for most limbs only a much lower percentage (minimally 22.4%) of peak Gracilis force (mean 41.59N (SD 41.76N)) was available at 120° knee flexion. Moreover, a clinical metric was obtained showing that the occurrence of a contracture was not correlated significantly with key determinants of knee angle-Gracilis force characteristics. INTERPRETATION Our hypotheses are rejected: the spastic Gracilis has no narrow operational joint range of force exertion and no supreme active resistance capacity to stretch at low length. We conclude that if activated alone, spastic muscle shows no abnormal mechanics representative of joint movement disorder. Simultaneous stimulation of other muscles as in daily activities may change this situation.
Journal of Electromyography and Kinesiology | 2013
Filiz Ateş; Rana Nur Ozdeslik; Peter A. Huijing; Can A. Yucesoy
Epimuscular myofascial force transmission (EMFT) is a major determinant of muscle force exerted, as well as length range of force exertion. Therefore, EMFT is of importance in remedial surgery performed, e.g., in spastic paresis. We aimed to test the following hypotheses: (1) muscle lengthening surgery (involving preparatory dissection (PD) and subsequent proximal aponeurotomy (AT)) affects the target muscle force exerted at its distal and proximal tendons differentially, (2) forces of non-operated synergistic muscles are affected as well, (3) PD causes some of these effects. In three conditions (control, post-PD, and post-AT exclusively on m. extensor digitorum longus (EDL)), forces exerted by rat anterior crural muscles were measured simultaneously. Our results confirm hypotheses (1-2), and hypothesis (3) in part: Reduction of EDL maximal force differed by location (i.e. 26.3% when tested distally and 44.5% when tested proximally). EDL length range of active force exertion increased only distally. Force reductions were shown also for non-operated tibialis anterior (by 11.9%), as well as for extensor hallucis longus (by 8.4%) muscles. In tibialis anterior only, part of the force reduction (4.9%) is attributable to PD. Due to EMFT, remedial surgery should be considered to have differential effects for targeted and non-targeted synergistic muscles.
Muscle & Nerve | 2015
Can A. Yucesoy; Ahu N. Turkoglu; Sevgi Umur; Filiz Ateş
Introduction: We tested the hypothesis that BTX‐A diminishes epimuscular myofascial force transmission (EMFT) within an intact muscle compartment. Methods: The tibialis anterior (TA) and extensor hallucis longus (EHL) muscles were kept at constant length, whereas the position of the extensor digitorum longus (EDL) muscle was changed exclusively. Two groups of Wistar rats were tested: a control group (no BTX‐A injected) and a BTX group (0.1 unit of BTX‐A injected into the mid‐belly of TA). Results: In controls, distally altered EDL position affected EDL distal and proximal forces and proximodistal force differences, indicating substantial EMFT. In the BTX group, EDL forces measured at the most proximal position did not change significantly with altered muscle position, and EDL proximodistal force differences became minimized. Conclusions: Use of BTX‐A diminishes EMFT. It may be relevant clinically that BTX‐A compromises intermuscular mechanical interaction, as recent studies have shown that such an interaction plays a role in the abnormal mechanics of spastic muscle. Muscle Nerve 51: 106–116, 2015
Clinical Biomechanics | 2014
Filiz Ateş; Yener Temelli; Can A. Yucesoy
BACKGROUND Recent intra-operative knee angle-muscle force data showed no abnormal muscular mechanics (i.e., a narrow joint range of muscle force exertion and peak muscle force availability at flexed joint positions), if the spastic gracilis muscle was stimulated alone. This can limit inter-muscular mechanical interactions, which have been shown to affect muscular mechanics substantially. We aimed at testing the hypothesis that the knee angle-muscle force curves of the spastic gracilis muscle activated simultaneously with a knee extensor are representative of joint movement disorder. METHODS Experiments were performed during remedial surgery of spastic cerebral palsy patients (n=6, 10 limbs tested). Condition-I: muscle forces were measured in flexed knee positions (120° and 90°) after activating the gracilis exclusively. Condition-II: knee angle-muscle force data were measured from 120° to full extension after activating the vastus medialis, simultaneously. FINDINGS Condition-II vs. I: Inter-antagonistic interaction did not consistently cause a gracilis force increase. Condition-II: Peak muscle force=mean 47.92 N (SD 22.08 N). Seven limbs showed availability of high muscle force in flexed knee positions (with minimally 84.8% of peak force at 120°). Knee angle-muscle force curves of four of them showed a local minimum followed by an increasing force (explained by an increasing passive force, indicating muscle lengths unfavorable for active force exertion). High active gracilis forces measured at flexed knee positions and narrow operational joint range of force exertion do indicate abnormality. The remainder of the limbs showed no such abnormality. INTERPRETATION Our hypothesis is confirmed for most, but not all limbs tested. Therefore, tested inter-antagonistic mechanical interaction can certainly, but not exclusively be a factor for abnormal mechanics of the spastic muscle.
Journal of Biomechanical Engineering-transactions of The Asme | 2012
Can A. Yucesoy; Önder Emre Arıkan; Filiz Ateş
Measurement of forces of mono- and bi-articular muscles of an entire intact muscle compartment can allow for a comprehensive assessment of the effects of Botulinum toxin type A (BTX-A) both at and beyond the injection site, and in conditions close to those in vivo. The goal was to test the hypotheses that BTX-A affects (1) the forces of not only the injected but also the noninjected muscles of the compartment, and (2) epimuscular myofascial force transmission (EMFT). Two groups of Wistar rats were tested: Control (no BTX-A injected) and BTX (0.1 units of BTX-A were injected exclusively to the mid-belly of TA). Isometric forces were measured simultaneously at the distal tendons of the tibialis anterior (TA) at different lengths, the restrained extensor digitorum longus (EDL) and the extensor hallucis longus (EHL) muscles and at the proximal tendon of EDL. Five days post-injection, BTX-A did affect the total forces of all muscles significantly: (1) The TA force decreased differentially (by 46.6%-55.9%) for most lengths such that a significant negative correlation was found between force reductions and increased muscle length. The maximum TA force decreased by 47.3%. However, the muscles length range of force production did not change significantly. (2) Distal and proximal EDL forces decreased (on average by 67.8% and 62.9%, respectively). (3) The EHL force also decreased (on average by 9.2%). The passive forces of only the TA showed a significant increase at higher lengths. EMFT effects were shown for the control group: (1) at the shortest TA lengths, the EDL proximo-distal force differences were in favor of the distal force, which was reversed at higher lengths. (2) the EHL force measured at the shortest TA length decreased (by 34%) as a function of TA lengthening. After BTX-A exposure, such EMFT effects disappeared for the EDL, whereas they remained as profound for the EHL. Exposure to BTX-A does affect forces of all muscles operating in an intact compartment. For the BTX-A injected muscle, the reduction in muscle force becomes less pronounced at higher muscle lengths. BTX-A also has effects on EMFT, however, these effects are not uniform within the anterior crural compartment. Decreased forces of the noninjected synergistic muscles suggest the presence of unintended additional effects of BTX-A both for the targeted distal joint and for the nontargeted proximal joint.
Muscle & Nerve | 2014
Filiz Ateş; Can A. Yucesoy
Introduction: The goal of this study was to test the hypothesis that botulinum toxin type A (BTX‐A) injection in rat tibialis anterior (TA) muscle affects the mechanics of its bi‐articular synergist, both actively and passively. Methods: Two groups of Wistar rats were tested: control (no BTX‐A) and BTX (0.1 U of BTX‐A) animals were injected exclusively to the mid‐belly of TA. Extensor digitorum longus (EDL) muscle isometric forces were measured after proximal and distal lengthening. Results: Five days after injection, BTX‐A administration changed EDL mechanics: (1) active forces decreased (proximal muscle length dependently); (2) length range of active force exertion decreased both proximally and distally; and (3) passive muscle forces increased. Conclusions: Effects of BTX‐A appear to not be limited to decreased active muscle tone, but may cause also a narrower active range of movement and increased passive resistance. Through spread of BTX‐A to a bi‐articular muscle, such effects are plausible for both joints spanned. Muscle Nerve 49: 866–878, 2014