Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filomain Nguemo is active.

Publication


Featured researches published by Filomain Nguemo.


Circulation | 2008

Generation of Functional Murine Cardiac Myocytes From Induced Pluripotent Stem Cells

Christina Mauritz; Kristin Schwanke; Michael Reppel; Stefan Neef; Katherina Katsirntaki; Lars S. Maier; Filomain Nguemo; Sandra Menke; Moritz Haustein; Juergen Hescheler; Gerd Hasenfuss; Ulrich Martin

Background— The recent breakthrough in the generation of induced pluripotent stem (iPS) cells, which are almost indistinguishable from embryonic stem (ES) cells, facilitates the generation of murine disease– and human patient–specific stem cell lines. The aim of this study was to characterize the cardiac differentiation potential of a murine iPS cell clone in comparison to a well-established murine ES cell line. Methods and Results— With the use of a standard embryoid body–based differentiation protocol for ES cells, iPS cells as well as ES cells were differentiated for 24 days. Although the analyzed iPS cell clone showed a delayed and less efficient formation of beating embryoid bodies compared with the ES cell line, the differentiation resulted in an average of 55% of spontaneously contracting iPS cell embryoid bodies. Analyses on molecular, structural, and functional levels demonstrated that iPS cell–derived cardiomyocytes show typical features of ES cell–derived cardiomyocytes. Reverse transcription polymerase chain reaction analyses demonstrated expression of marker genes typical for mesoderm, cardiac mesoderm, and cardiomyocytes including Brachyury, mesoderm posterior factor 1 (Mesp1), friend of GATA2 (FOG-2), GATA-binding protein 4 (GATA4), NK2 transcription factor related, locus 5 (Nkx2.5), T-box 5 (Tbx5), T-box 20 (Tbx20), atrial natriuretic factor (ANF), myosin light chain 2 atrial transcripts (MLC2a), myosin light chain 2 ventricular transcripts (MLC2v), &agr;-myosin heavy chain (&agr;-MHC), and cardiac troponin T in differentiation cultures of iPS cells. Immunocytology confirmed expression of cardiomyocyte-typical proteins including sarcomeric &agr;-actinin, titin, cardiac troponin T, MLC2v, and connexin 43. iPS cell cardiomyocytes displayed spontaneous rhythmic intracellular Ca2+ fluctuations with amplitudes of Ca2+ transients comparable to ES cell cardiomyocytes. Simultaneous Ca2+ release within clusters of iPS cell–derived cardiomyocytes indicated functional coupling of the cells. Electrophysiological studies with multielectrode arrays demonstrated functionality and presence of the &bgr;-adrenergic and muscarinic signaling cascade in these cells. Conclusions— iPS cells differentiate into functional cardiomyocytes. In contrast to ES cells, iPS cells allow derivation of autologous functional cardiomyocytes for cellular cardiomyoplasty and myocardial tissue engineering.


Cellular Physiology and Biochemistry | 2011

In vitro Modeling of Ryanodine Receptor 2 Dysfunction Using Human Induced Pluripotent Stem Cells

Azra Fatima; Guoxing Xu; Kaifeng Shao; Symeon Papadopoulos; Martin Lehmann; Juan Jose Arnaiz-Cot; Angelo O. Rosa; Filomain Nguemo; Matthias Matzkies; Sven Dittmann; Susannah L. Stone; Matthias Linke; Ulrich Zechner; Vera Beyer; Hans Christian Hennies; Stephan Rosenkranz; Baerbel Klauke; Abdul Shokor Parwani; Wilhelm Haverkamp; Gabriele Pfitzer; Martin Farr; Lars Cleemann; Martin Morad; Hendrik Milting; Juergen Hescheler; Tomo Saric

Background/Aims: Induced pluripotent stem (iPS) cells generated from accessible adult cells of patients with genetic diseases open unprecedented opportunities for exploring the pathophysiology of human diseases in vitro. Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is an inherited cardiac disorder that is caused by mutations in the cardiac ryanodine receptor type 2 gene (RYR2) and is characterized by stress-induced ventricular arrhythmia that can lead to sudden cardiac death in young individuals. The aim of this study was to generate iPS cells from a patient with CPVT1 and determine whether iPS cell-derived cardiomyocytes carrying patient specific RYR2 mutation recapitulate the disease phenotype in vitro. Methods: iPS cells were derived from dermal fibroblasts of healthy donors and a patient with CPVT1 carrying the novel heterozygous autosomal dominant mutation p.F2483I in the RYR2. Functional properties of iPS cell derived-cardiomyocytes were analyzed by using whole-cell current and voltage clamp and calcium imaging techniques. Results: Patch-clamp recordings revealed arrhythmias and delayed afterdepolarizations (DADs) after catecholaminergic stimulation of CPVT1-iPS cell-derived cardiomyocytes. Calcium imaging studies showed that, compared to healthy cardiomyocytes, CPVT1-cardiomyocytes exhibit higher amplitudes and longer durations of spontaneous Ca2+ release events at basal state. In addition, in CPVT1-cardiomyocytes the Ca2+-induced Ca2+-release events continued after repolarization and were abolished by increasing the cytosolic cAMP levels with forskolin. Conclusion: This study demonstrates the suitability of iPS cells in modeling RYR2-related cardiac disorders in vitro and opens new opportunities for investigating the disease mechanism in vitro, developing new drugs, predicting their toxicity, and optimizing current treatment strategies.


Cellular Physiology and Biochemistry | 2009

Cardiac myocytes derived from murine reprogrammed fibroblasts: intact hormonal regulation, cardiac ion channel expression and development of contractility.

Kurt Pfannkuche; Huamin Liang; Tobias Hannes; Jiaoya Xi; Azra Fatima; Filomain Nguemo; Matthias Matzkies; Marius Wernig; Rudolf Jaenisch; Frank Pillekamp; Marcel Halbach; Heribert Schunkert; Tomo Saric; Juergen Hescheler; Michael Reppel

Aims: Induced pluripotent stem (iPS) cells have a developmental potential similar to that of blastocyst-derived embryonic stem (ES) cells and may serve as an autologous source of cells for tissue repair, in vitro disease modelling and toxicity assays. Here we aimed at generating iPS cell-derived cardiomyocytes (CMs) and comparing their molecular and functional characteristics with CMs derived from native murine ES cells. Methods and Results: Beating cardiomyocytes were generated using a mass culture system from murine N10 and O9 iPS cells as well as R1 and D3 ES cells. Transcripts of the mesoderm specification factor T-brachyury and non-atrial cardiac specific genes were expressed in differentiating iPS EBs. Using immunocytochemistry to determine the expression and intracellular organisation of cardiac specific structural proteins we demonstrate strong similarity between iPS-CMs and ES-CMs. In line with a previous study electrophysiological analyses showed that hormonal response to β-adrenergic and muscarinic receptor stimulation was intact. Action potential (AP) recordings suggested that most iPS-CMs measured up to day 23 of differentiation are of ventricular-like type. Application of lidocaine, Cs+, SEA0400 and verapamil+ nifedipine to plated iPS-EBs during multi-electrode array (MEA) measurements of extracellular field potentials and intracellular sharp electrode recordings of APs revealed the presence of INa, If, INCX, and ICaL, respectively, and suggested their involvement in cardiac pacemaking, with ICaL being of major importance. Furthermore, iPS-CMs developed and conferred force to avitalized ventricular tissue that was responsive to β-adrenergic stimulation. Conclusions: Our data demonstrate that the cardiogenic potential of iPS cells is comparable to that of ES cells and that iPS-CMs possess all fundamental functional elements of a typical cardiac cell, including spontaneous beating, hormonal regulation, cardiac ion channel expression and contractility. Therefore, iPS-CMs can be regarded as a potentially valuable source of cells for in vitro studies and cellular cardiomyoplasty.


BMC Developmental Biology | 2010

Global transcriptional profiles of beating clusters derived from human induced pluripotent stem cells and embryonic stem cells are highly similar

Manoj Kumar Gupta; Damir J. Illich; Andrea Gaarz; Matthias Matzkies; Filomain Nguemo; Kurt Pfannkuche; Huamin Liang; Sabine Classen; Michael Reppel; Joachim L. Schultze; Jürgen Hescheler; Tomo Saric

BackgroundFunctional and molecular integrity of cardiomyocytes (CMs) derived from induced pluripotent stem (iPS) cells is essential for their use in tissue repair, disease modelling and drug screening. In this study we compared global transcriptomes of beating clusters (BCs) microdissected from differentiating human iPS cells and embryonic stem (ES) cells.ResultsHierarchical clustering and principal component analysis revealed that iPS-BCs and ES-BCs cluster together, are similarly enriched for cardiospecific genes and differ in expression of only 1.9% of present transcripts. Similarly, sarcomeric organization, electrophysiological properties and calcium handling of iPS-CMs were indistinguishable from those of ES-CMs. Gene ontology analysis revealed that among 204 genes that were upregulated in iPS-BCs vs ES-BCs the processes related to extracellular matrix, cell adhesion and tissue development were overrepresented. Interestingly, 47 of 106 genes that were upregulated in undifferentiated iPS vs ES cells remained enriched in iPS-BCs vs ES-BCs. Most of these genes were found to be highly expressed in fibroblasts used for reprogramming and 34% overlapped with the recently reported iPS cell-enriched genes.ConclusionsThese data suggest that iPS-BCs are transcriptionally highly similar to ES-BCs. However, iPS-BCs appear to share some somatic cell signature with undifferentiated iPS cells. Thus, iPS-BCs may not be perfectly identical to ES-BCs. These minor differences in the expression profiles may occur due to differential cellular composition of iPS-BCs and ES-BCs, due to retention of some genetic profile of somatic cells in differentiated iPS cell-derivatives, or both.


Stem Cells and Development | 2012

Contractile Properties of Early Human Embryonic Stem Cell-Derived Cardiomyocytes: Beta-Adrenergic Stimulation Induces Positive Chronotropy and Lusitropy but Not Inotropy

Frank Pillekamp; Moritz Haustein; Markus Khalil; Markus Emmelheinz; Rewa Nazzal; Roland Adelmann; Filomain Nguemo; Olga Rubenchyk; Kurt Pfannkuche; Matthias Matzkies; Michael Reppel; Wilhelm Bloch; Konrad Brockmeier; Juergen Hescheler

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide the unique opportunity to study the very early development of the human heart. The aim of this study was to investigate the effect of calcium and beta-adrenergic stimulation on the contractile properties of early hESC-CMs. Beating clusters containing hESC-CMs were co-cultured in vitro with noncontractile slices of neonatal murine ventricles. After 5-7 days, when beating clusters had integrated morphologically into the damaged tissue, isometric force measurements were performed during spontaneous beating as well as during electrical field stimulation. Spontaneous beating stopped when extracellular calcium ([Ca²⁺](ec)) was removed or after administration of the Ca²⁺ channel blocker nifedipine. During field stimulation at a constant rate, the developed force increased with incremental concentrations of [Ca²⁺](ec). During spontaneous beating, rising [Ca²⁺](ec) increased beating rate and developed force up to a [Ca²⁺](ec) of 2.5 mM. When [Ca²⁺](ec) was increased further, spontaneous beating rate decreased, whereas the developed force continued to increase. The beta-adrenergic agonist isoproterenol induced a dose-dependent increase of the frequency of spontaneous beating; however, it did not significantly change the developed force during spontaneous contractions or during electrical stimulation at a constant rate. Force developed by early hESC-CMs depends on [Ca²⁺](ec) and on the L-type Ca²⁺ channel. The lack of an inotropic reaction despite a pronounced chronotropic response after beta-adrenergic stimulation most likely indicates immaturity of the sarcoplasmic reticulum. For cell-replacement strategies, further maturation of cardiac cells has to be achieved either in vitro before or in vivo after transplantation.


Cardiovascular Research | 2012

Organotypic slice culture from human adult ventricular myocardium

Matthias Brandenburger; Jan Wenzel; Roman Bogdan; Doreen Richardt; Filomain Nguemo; Michael Reppel; Jürgen Hescheler; Heinrich Terlau; Andreas Dendorfer

AIMS Cardiovascular research requires complex and functionally intact experimental models. Due to major differences in the cellular and subcellular composition of the myocardium between species, the use of human heart tissue is highly desirable. To enhance the experimental use of the human myocardium, we established methods for the preparation of vital tissue slices from the adult ventricular myocardium as well as conditions for their long-term preservation in organotypic culture. METHODS AND RESULTS Human ventricular heart samples were derived from surgical specimens excised during a therapeutic Morrow myectomy and cut into 300 μm thick slices. Slices were either characterized in acute experiments or cultured at a liquid-air interface. Viability and functionality were proven by viability staining, enzyme activity tests, intracellular potential recordings, and force measurements. Precision-cut slices showed high viability throughout 28 days in culture and displayed typical cardiomyocyte action potential characteristics, which enabled pharmacological safety testing on the rapid component of the delayed rectifier potassium current (I(Kr)) and ATP-dependent potassium channels throughout the whole culture period. Constant expression of major ion channels was confirmed by quantitative PCR. Acute slices developed excitation-dependent contractions with a clear preload dependency and a β-adrenergic response. Contractility and myosin light chain expression decreased during the first days in culture but reached a steady state with reactivity upon β-adrenergic stimulation being preserved. CONCLUSION Organotypic heart slices represent a multicellular model of the human myocardium and a novel platform for studies ranging from the investigation of molecular interactions to tissue engineering.


Cellular Physiology and Biochemistry | 2012

In vitro Model for Assessing Arrhythmogenic Properties of Drugs Based on High-resolution Impedance Measurements

Filomain Nguemo; Tomo Saric; Kurt Pfannkuche; Manfred Watzele; Michael Reppel; Jürgen Hescheler

Background/Aims: Cardiac dysfunction is one of the main cause of drug candidate failures in the preclinical and/or clinical studies and responsible for the retraction of large number of drugs from the market. The prediction of arrhythmic risk based on preclinical trials during drug development remains limited despite intensive and costly investigation. Moreover, methods for analyzing beating behavior of cardiomyocytes (CMs) in culture to diagnose arrhythmias are not well developed. Methods: In this study, we combined two emerging technologies, induced pluripotent stem (iPS) cell-derived CMs and impedance-based real-time (xCELLigence RTCA Cardio Instrument) monitoring of CM electrical activity, to assess the effect of drugs known affect cardiac activity such as isoproterenol, carbachol, terfenadine, sotalol and doxorubicin. Cells were exposed to a drug in a single dose or repeated dose scenarios and data were analyzed using RTCA Cardio software, Poincaré plot and detrended fluctuation analysis. Results: The results revealed significant changes in beating parameters of iPS-CMs induced by reference compounds. Heptanol, gap junction blocker, completely disrupted the synchronous beating pattern of iPS-CMs. Decrease of beating rate, amplitude and beat-to-beat signal variations of iPS-CMs monolayer observed in the presence of doxorubicin revealed severe abnormality detected by the system. Additionally, the irregular beating rhythms recorded in the presence of Terfenadine and Sotalol at high concentration, reflect abnormalities in cell contraction and/or relaxation which may lead to arrhythmia. Conclusions: All these results indicated that xCELLigence RTCA Cardio system combined with iPS cells, has the potential to be an attractive high-throughput tool for studying CMs during prolonged culture times and to screen potential drugs for cardiotoxic side effects.


PLOS ONE | 2013

The disease-specific phenotype in cardiomyocytes derived from induced pluripotent stem cells of two long QT syndrome type 3 patients.

Azra Fatima; Shao Kaifeng; Sven Dittmann; Guoxing Xu; Manoj Kumar Gupta; Matthias Linke; Ulrich Zechner; Filomain Nguemo; Hendrik Milting; Martin Farr; Jürgen Hescheler; Tomo Saric

Long QT syndromes (LQTS) are heritable diseases characterized by prolongation of the QT interval on an electrocardiogram, which often leads to syncope and sudden cardiac death. Here we report the generation of induced pluripotent stems (iPS) cells from two patients with LQTS type 3 carrying a different point mutation in a sodium channel Nav1.5 (p.V240M and p.R535Q) and functional characterization of cardiomyocytes (CM) derived from them. The iPS cells exhibited all characteristic properties of pluripotent stem cells, maintained the disease-specific mutation and readily differentiated to CM. The duration of action potentials at 50% and 90% repolarization was longer in LQTS-3 CM as compared to control CM but this difference did not reach statistical significance due to high variations among cells. Sodium current recordings demonstrated longer time to peak and longer time to 90% of inactivation of the Na+ channel in the LQTS-3 CM. This hints at a defective Na+ channel caused by deficiency in open-state inactivation of the Na+ channel that is characteristic of LQTS-3. These analyses suggest that the effect of channel mutation in the diseased CM is demonstrated in vitro and that the iPS cell-derived CM can serve as a model system for studying the pathophysiology of LQTS-3, toxicity testing and design of novel therapeutics. However, further improvements in the model are still required to reduce cell-to-cell and cell line-to-cell line variability.


PLOS ONE | 2012

Human Pluripotent Stem Cell-Derived Cardiomyocytes: Response to TTX and Lidocain Reveals Strong Cell to Cell Variability

Xiaowu Sheng; Michael Reppel; Filomain Nguemo; Farooq Ibrahem Mohammad; Alexey Kuzmenkin; Jürgen Hescheler; Kurt Pfannkuche

Stem cell derived cardiomyocytes generated either from human embryonic stem cells (hESC-CMs) or human induced pluripotent stem cells (hiPSC-CMs) hold great promise for the investigation of early developmental processes in human cardiomyogenesis and future cell replacement strategies. We have analyzed electrophysiological properties of hESC-CMs (HES2) and hiPSC-CMs, derived from reprogrammed adult foreskin fibroblasts that have previously been found to be highly similar in terms of gene expression. In contrast to the similarity found in the expression profile we found substantial differences in action potentials (APs) and sodium currents at late stage (day 60) of in vitro differentiation with higher sodium currents in hiPSC-CMs. Sensitivity to lidocain was considerably reduced in hESC-CMs as compared to hiPSC-CMs, and the effect could not be explained by differences in beating frequency. In contrast, sensitivity to tetrodotoxin (TTX) was higher in hESC-CMs suggesting different contributions of TTX-sensitive and TTX-resistant sodium channels to AP generation. These data point to physiological differences that are not necessarily detected by genomics. We conclude that novel pharmacological screening-assays using hiPSC-CMs need to be applied with some caution.


Cardiovascular Research | 2013

Impact of human autoantibodies on β1-adrenergic receptor conformation, activity, and internalization

Beatrice Bornholz; Stefanie Weidtkamp-Peters; Stephanie Schmitmeier; Claus A.M. Seidel; Lars R. Herda; Stephan B. Felix; Horst Lemoine; Jürgen Hescheler; Filomain Nguemo; Christoph Schäfer; Morten O. Christensen; Christian Mielke; Fritz Boege

Aims Autoantibodies against second extracellular loops of β1-adrenergic receptors frequent in dilated cardiomyopathy confer myocardial dysfunction presumably via cAMP stimulation. Here, we investigate the autoantibody impact on receptor conformation and function. Methods and results IgG was prepared from patients with dilated cardiomyopathy, matched healthy donors (10 each) or commercial IgG preparations (2). IgG binding to β1-adrenergic receptor peptides was detected in 5 of 10 patients and 2 of 10 controls. IgG colocalization with the native receptor was detected in 8 of 10 patients and 1 of 10 controls (10 of 10 patients and 7 of 10 controls at >30 mg IgG/L). All IgGs exhibiting receptor colocalization triggered changes in receptor conformation (determined with fluorescent sensors) not stringently correlated to cAMP stimulation, suggesting the induction of more or less active receptor conformations. Receptor-activating IgG was detected in 8 of 10 patients but only 1 of 10 controls. In addition, IgG from 8 of 10 patients and 3 of 10 controls attenuated receptor internalization (measured by total internal reflection fluorescence microscopy). IgG-inducing inactive receptor conformations had no effect on subsequent cAMP stimulation by isoproterenol. IgG-inducing active receptor conformations dampened or augmented subsequent cAMP stimulation by isoproterenol, depending on whether receptor internalization was attenuated or not. Corresponding IgG effects on the basal beating rate and chronotropic isoproterenol response of embryonic human cardiomyocytes were observed. Conclusions (i) Autoantibodies trigger conformation changes in the β1-adrenergic receptor molecule. (ii) Some also attenuate receptor internalization. (iii) Combinations thereof increase the basal beating rate of cardiomyocytes and optionally entail dampening of their chronotropic catecholamine responses. (iv) The latter effects seem specific for patient autoantibodies, which also have higher levels.

Collaboration


Dive into the Filomain Nguemo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge