Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filomena Adega is active.

Publication


Featured researches published by Filomena Adega.


European Journal of Medicinal Chemistry | 2011

Anti-hepatocellular carcinoma activity using human HepG2 cells and hepatotoxicity of 6-substituted methyl 3-aminothieno[3,2-b]pyridine-2- carboxylate derivatives: In vitro evaluation, cell cycle analysis and QSAR studies

Rui M.V. Abreu; Isabel C.F.R. Ferreira; Ricardo C. Calhelha; Raquel T. Lima; M. Helena Vasconcelos; Filomena Adega; Raquel Chaves; Maria João R.P. Queiroz

Hepatocellular carcinoma (HCC) is a highly complex cancer, resistant to commonly used treatments and new therapeutic agents are urgently needed. A total of thirty-two thieno[3,2-b]pyridine derivatives of two series: methyl 3-amino-6-(hetero)arylthieno[3,2-b]pyridine-2-carboxylates (1a-1t) and methyl 3-amino-6-[(hetero)arylethynyl]thieno[3,2-b]pyridine-2-carboxylates (2a-2n), previously prepared by some of us, were evaluated as new potential anti-HCC agents by studying their in vitro cell growth inhibition on human HepG2 cells and hepatotoxicity using a porcine liver primary cell culture (PLP1). The presence of amino groups linked to a benzene moiety emerges as the key element for the anti-HCC activity. The methyl 3-amino-6-[(3-aminophenyl)ethynyl]thieno[3,2-b]pyridine-2-carboxylate (2f) is the most potent compound presenting GI(50) values on HepG2 cells of 1.2 μM compared to 2.9 μM of the positive control ellipticine, with no observed hepatotoxicity (PLP1 GI(50) > 125 μM against 3.3 μM of ellipticine). Moreover this compound changes the cell cycle profile of the HepG2 cells, causing a decrease in the % of cells in the S phase and a cell cycle arrest in the G2/M phase. QSAR studies were also performed and the correlations obtained using molecular and 1D descriptors revealed the importance of the presence of amino groups and hydrogen bond donors for anti-HCC activity, and hydrogen bond acceptors for hepatotoxicity. The best correlations were obtained with 3D descriptors belonging to different subcategories for anti-HCC activity and hepatotoxicity, respectively. These results point to different molecular mechanisms of action of the compounds in anti-HCC activity and hepatotoxicity. This work presents some promising thieno[3,2-b]pyridine derivatives for potential use in the therapy of HCC. These compounds can also be used as scaffolds for further synthesis of more potent analogs.


Cytogenetic and Genome Research | 2002

In situ hybridization and chromosome banding in mammalian species

Raquel Chaves; Filomena Adega; Sara Santos; Henrique Guedes-Pinto; J. S. Heslop-Harrison

Chromosome banding is often required in conjunction with fluorescent in situ hybridization of labelled probes for chromosome painting, satellite DNA and low-copy sequences to allow identification of chromosomes and simultaneous probe localization. Here, we present a method that reveals both patterns with only one observation step. The band pattern is produced by restriction-enzyme digestion of chromosomes, followed by fixation with paraformaldehyde in PBS, a short chromosome denaturation step in hybridization solution, and then standard in situ hybridization, washing and detection protocols. Using a range of different mammalian species, chromosome-banding patterns were immediately recognizable, although synchronisation procedures normally required for high- resolution G-banding were not needed. Unlike other methods available, only one round of observation is required using a conventional fluorescence microscope, the method works without modification in many species, and in situ hybridization is not used for chromosome identification (allowing multiple targets and minimizing background). The banding pattern is probably generated by a combination of DNA dissolution and heterochromatin reorganisation after enzyme digestion, followed by paraformaldehyde fixation of the new chromatin structure and incomplete denaturation. The method is of widespread utility in comparative genomics and genome organization programmes.


Chromosome Research | 2006

Cattle rob(1;29) originating from complex chromosome rearrangements as revealed by both banding and FISH-mapping techniques

G.P. Di Meo; A. Perucatti; Raquel Chaves; Filomena Adega; L. De Lorenzi; L. Molteni; A. De Giovanni; D. Incarnato; Henrique Guedes-Pinto; A. Eggen; L. Iannuzzi

Sixteen carriers of rob(1;29) (one of which was homozygous) from six different breeds (four Italian and two Portuguese), two heterozygous carriers of rob(26;29), three river buffaloes and two sheep were cytogenetically investigated in this study by using banding and FISH-mapping techniques (the latter only in cattle and river buffalo). Single- and dual- colour FISH were used with bovine probes containing both INRA143 (mapping proximally to BTA29) and bovine satellite (SAT) DNA SAT I, SAT III and SAT IV (mapping at the centromeric regions of cattle chromosomes). The combined use of these probes, the comparison of rob(1;29) with the dicentric rob(26;29) and with both river buffalo and sheep chromosomes (biarmed pairs) allowed us to hypothezise that rob(1;29) originated from complex chromosomal rearrangements through at least three sequential events: (a) centric fusion with the formation of a dicentric chromosome; (b) formation of a monocentric chromosome with loss of SAT I from both BTA1 and BTA29, most of SAT IV from BTA29 and, probably, some repeats of SAT III from BTA1; (c) double pericentric inversion or, more probably, a chromosome transposition of a small chromosome segment containing INRA143 from proximal p-arms to proximal q-arm of the translocated chromosome.


Cytogenetic and Genome Research | 2009

Satellite DNA in the Karyotype Evolution of Domestic Animals – Clinical Considerations

Filomena Adega; Henrique Guedes-Pinto; Raquel Chaves

Eukaryotic genomes contain far more DNA than needed for coding proteins. Some of these additional DNA sequences comprise non-coding repetitive DNA sequences, mostly satellite DNAs and also transposable elements usually located at the heterochromatic regions of chromosomes. Satellite DNAs consist of tandemly repeated DNA sequences inhabiting the mammalian genome, typically organized in long arrays of hundreds or thousands of copies. Different important functions have been ascribed to satellite DNA, from the imperative centromeric function in mitosis and meiosis to the recent discovery of its involvement in regulatory functions via satellite transcripts. Moreover, satellite DNAs, among other repetitive sequences, are believed to be the ‘engine’ triggering mammalian genome evolution. Repetitive DNAs are, most likely, the genetic factors responsible for promoting genomic plasticity and therefore higher rates of chromosome mutation. Furthermore, constitutive heterochromatin regions are thought to be ‘hotspots’ for structural chromosome rearrangements. A considerable collection of evidences places these sequences in the landscape of mammalian evolution. However, the mechanisms that could explain how this alliance between chromosome evolution and satellite DNA is made are still enigmatic and subject of debate. Throughout the mammalian taxa, different patterns of chromosome evolution have been widely registered from heterochromatin additions/eliminations, Robertsonian translocations, whole-arm reciprocal translocations to tandem translocations; the fact is genome’s repetitive fraction is playing a central role in mammalian genome structuring. Throughout this review we will focus on the evidences that associate satellite DNAs and constitutive heterochromatin to the process of chromosome evolution and consequently to domestic species genome’s remodeling.


Scopus | 2003

Complex satellite DNA reshuffling in the polymorphic t(1;29) Robertsonian translocation and evolutionarily derived chromosomes in cattle

Raquel Chaves; Filomena Adega; J. S. Heslop-Harrison; Henrique Guedes-Pinto; Johannes Wienberg

We have analysed and mapped physically the satellite I, III (subunits pvu and sau) and IV DNA sequences in cattle using in-situ hybridization. Four breeds were analysed including individuals with a chromosome number of 2n=60 and individuals with the widespread t(1;29) in the homozygous (2n=58) and heterozygous state (2n=59). All three satellite DNA families were present at the centromeres of the many but not all of the autosomal acrocentric chromosomes, and essentially absent from the sex chromosomes. In the translocated t(1;29) chromosome, the satellite DNA families showed a different pattern from that simply derived by fusion of the acrocentric autosomes and loss of satellite sequences, with no variation between breeds. A model of centromeric evolution is presented involving two independent events. Knowledge of mechanisms of translocation formation within cattle is important for a functional understanding of centromere and satellites, investigation of chromosomal abnormalities, and for understanding chromosomal fusion during evolution of other bovids and genome evolution in general.


Archive | 2013

The Importance of Cancer Cell Lines as in vitro Models in Cancer Methylome Analysis and Anticancer Drugs Testing

Daniela Ferreira; Filomena Adega; Raquel Chaves

© 2013 Chaves et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Importance of Cancer Cell Lines as in vitro Models in Cancer Methylome Analysis and Anticancer Drugs Testing


PLOS ONE | 2012

Defining the Sister Rat Mammary Tumor Cell Lines HH-16 cl.2/1 and HH-16.cl.4 as an In Vitro Cell Model for Erbb2

Sandra Louzada; Filomena Adega; Raquel Chaves

Cancer cell lines have been shown to be reliable tools in genetic studies of breast cancer, and the characterization of these lines indicates that they are good models for studying the biological mechanisms underlying this disease. Here, we describe the molecular cytogenetic/genetic characterization of two sister rat mammary tumor cell lines, HH-16 cl.2/1 and HH-16.cl.4, for the first time. Molecular cytogenetic analysis using rat and mouse chromosome paint probes and BAC/PAC clones allowed the characterization of clonal chromosome rearrangements; moreover, this strategy assisted in revealing detected breakpoint regions and complex chromosome rearrangements. This comprehensive cytogenetic analysis revealed an increase in the number of copies of the Mycn and Erbb2 genes in the investigated cell lines. To analyze its possible correlation with expression changes, relative RNA expression was assessed by real-time reverse transcription quantitative PCR and RNA FISH. Erbb2 was found to be overexpressed in HH-16.cl.4, but not in the sister cell line HH-16 cl.2/1, even though these lines share the same initial genetic environment. Moreover, the relative expression of Erbb2 decreased after global genome demethylation in the HH-16.cl.4 cell line. As these cell lines are commercially available and have been used in previous studies, the present detailed characterization improves their value as an in vitro cell model. We believe that the development of appropriate in vitro cell models for breast cancer is of crucial importance for revealing the genetic and cellular pathways underlying this neoplasy and for employing them as experimental tools to assist in the generation of new biotherapies.


Chromosome Research | 2011

Chromosomal evolution in Rattini (Muridae, Rodentia)

Daleen Badenhorst; Gauthier Dobigny; Filomena Adega; Raquel Chaves; Patricia C. M. O'Brien; Malcolm A. Ferguson-Smith; Paul D. Waters; Terence J. Robinson

The Rattini (Muridae, Murinae) includes the biologically important model species Rattus norvegicus (RNO) and represents a group of rodents that are of clinical, agricultural and epidemiological importance. We present a comparative molecular cytogenetic investigation of ten Rattini species representative of the genera Maxomys, Leopoldamys, Niviventer, Berylmys, Bandicota and Rattus using chromosome banding, cross-species painting (Zoo-fluorescent in situ hybridization or FISH) and BAC-FISH mapping. Our results show that these taxa are characterised by slow to moderate rates of chromosome evolution that contrasts with the extensive chromosome restructuring identified in most other murid rodents, particularly the mouse lineage. This extends to genomic features such as NOR location (for example, NORs on RNO 3 are present on the corresponding chromosomes in all species except Bandicota savilei and Niviventer fulvescens, and the NORs on RNO 10 are conserved in all Rattini with the exception of Rattus). The satellite I DNA family detected and characterised herein appears to be taxon (Rattus) specific, and of recent origin (consistent with a feedback model of satellite evolution). BAC-mapping using clones that span regions responsible for the morphological variability exhibited by RNO 1, 12 and 13 (acrocentric/submetacentric) and their orthologues in Rattus species, demonstrated that the differences are most likely due to pericentric inversions as exemplified by data on Rattus tanezumi. Chromosomal characters detected using R. norvegicus and Maxomys surifer whole chromosome painting probes were mapped to a consensus sequence-based phylogenetic tree thus allowing an objective assessment of ancestral states for the reconstruction of the putative Rattini ancestral karyotype. This is thought to have comprised 46 chromosomes that, with the exception of a single pair of metacentric autosomes, were acrocentric in morphology.


Micron | 2008

Different evolutionary trails in the related genomes Cricetus cricetus and Peromyscus eremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning

Sandra Louzada; Ana Paço; Svatava Kubickova; Filomena Adega; Henrique Guedes-Pinto; Jiri Rubes; Raquel Chaves

Constitutive heterochromatin comprises a substantial fraction of the eukaryotic genomes and is mainly composed of tandemly arrayed satellite DNAs (satDNA). These repetitive sequences represent a very dynamic and fast evolving component of genomes. In the present work we report the isolation of Cricetus cricetus (CCR, Cricetidae, Rodentia) centromeric repetitive sequences from chromosome 4 (CCR4/10sat), using the laser microdissection and laser pressure catapulting procedure, followed by DOP-PCR amplification and labelling. Physical mapping by fluorescent in situ hybridisation of these sequences onto C. cricetus and another member of Cricetidae, Peromyscus eremicus, displayed quite interesting patterns. Namely, the centromeric sequences showed to be present in another C. cricetus chromosome (CCR10) besides CCR4. Moreover, these almost chromosome-specific sequences revealed to be present in the P. eremicus genome, and most interestingly, displaying a ubiquitous scattered distribution throughout this karyotype. Finally and in both species, a co-localisation of CCR4/10sat with constitutive heterochromatin was found, either by classical C-banding or C-banding sequential to in situ endonuclease restriction. The presence of these orthologous sequences in both genomes is suggestive of a phylogenetic proximity. Furthermore, the existence of common repetitive DNA sequences with a different chromosomal location foresees the occurrence of an extensive process of karyotype restructuring somehow related with intragenomic movements of these repetitive sequences during the evolutionary process of C. cricetus and P. eremicus species.


Chromosome Research | 2006

High-resolution comparative chromosome painting in the Arizona collared peccary (Pecari tajacu, Tayassuidae): a comparison with the karyotype of pig and sheep

Filomena Adega; Raquel Chaves; Andrea Kofler; Paul R. Krausman; Julio S. Masabanda; Johannes Wienberg; Henrique Guedes-Pinto

We used chromosome painting with chromosome-specific probes derived from domestic sheep and pig for a high-resolution cytogenetic comparison with the karyotype of collared peccary (Pecari tajacu sonoriensis). A reorganization of the karyotype involving at least 62–66 conserved segments were observed between the sheep and collared peccary. This is an extremely high number compared with other members of the same mammalian order (Cetartiodactyla). The comparison between pig and collared peccary, both belonging to the Suiformes, however, revealed various changes in the gross organization of both karyotypes that may have already occurred in a common ancestor of both species suggesting a monophyletic origin of Suidae/Tayassuidae. The sheep probes, however, also revealed several rearrangements between the two Suidae/Tayassuidae, indicating that these probes represent a useful tool for a more detailed analysis of the evolutionary history of Suiformes. Our sample of the collared peccary from North America (Arizona, USA) showed distinct differences to those already described from South America. The chromosome painting results defined a complex translocation that involves chromosomes including about one-quarter of the entire collared peccary karyotype. This considerable rearrangement indicates subspecies or even species status of both peccary populations, as it should present a significant barrier for their hybridization.

Collaboration


Dive into the Filomena Adega's collaboration.

Top Co-Authors

Avatar

Raquel Chaves

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar

Henrique Guedes-Pinto

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar

Sandra Louzada

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Ana Paço

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar

A. Vieira-da-Silva

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana Meles

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar

Sara Santos

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar

Svatava Kubickova

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Isabel C.F.R. Ferreira

Instituto Politécnico Nacional

View shared research outputs
Researchain Logo
Decentralizing Knowledge