Filomena De Luca
University of Siena
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Filomena De Luca.
Antimicrobial Agents and Chemotherapy | 2006
Claudia Mugnaioli; Francesco Luzzaro; Filomena De Luca; Gioconda Brigante; Mariagrazia Perilli; Gianfranco Amicosante; Stefania Stefani; Antonio Toniolo; Gian Maria Rossolini
ABSTRACT A nationwide survey of extended-spectrum β-lactamase (ESBL) production among Enterobacteriaceae, carried out in 2003, showed that CTX-M-type enzymes have achieved a sizeable prevalence among ESBL producers in Italy, mostly in Escherichia coli and, to a lesser extent, in Klebsiella pneumoniae. In this work, we report on the molecular epidemiology of the CTX-M-producing isolates from that survey and on the mechanisms of dissemination of these emerging resistance determinants. The CTX-M-producing isolates were detected in 10 of the 11 participating centers distributed across the Italian national territory, although at remarkably variable rates in different centers (1.2 to 49.5% of the ESBL producers). All CTX-M determinants were of group 1, with CTX-M-15 and CTX-M-1 being the most prevalent variants (60% and 35%, respectively) and CTX-M-32 carried by a minority (5%) of isolates. Each variant was detected both in E. coli and in K. pneumoniae. Genotyping of the CTX-M-producing isolates by random amplification of polymorphic DNA revealed a notable diversity, especially among those producing CTX-M-1, while clonal expansion was evident with some CTX-M-15-producing strains. Mating experiments revealed a higher overall transferability of blaCTX-M-1 and blaCTX-M-32 than of blaCTX-M-15. Coresistance to quinolones and aminoglycosides was overall higher with the CTX-M-15-producing isolates. The present results indicate that CTX-M-producing strains are now widespread across the Italian territory and underscore the emerging role of these ESBL determinants in the European setting. They also reveal notable differences in the dissemination mechanisms of genes encoding different CTX-M variants of the same lineage.
Antimicrobial Agents and Chemotherapy | 2013
Sushmita D. Lahiri; Stefano Mangani; Thomas F. Durand-Réville; Manuela Benvenuti; Filomena De Luca; Jean-Denis Docquier
ABSTRACT Although β-lactams have been the most effective class of antibacterial agents used in clinical practice for the past half century, their effectiveness on Gram-negative bacteria has been eroded due to the emergence and spread of β-lactamase enzymes that are not affected by currently marketed β-lactam/β-lactamase inhibitor combinations. Avibactam is a novel, covalent, non-β-lactam β-lactamase inhibitor presently in clinical development in combination with either ceftaroline or ceftazidime. In vitro studies show that avibactam may restore the broad-spectrum activity of cephalosporins against class A, class C, and some class D β-lactamases. Here we describe the structures of two clinically important β-lactamase enzymes bound to avibactam, the class A CTX-M-15 extended-spectrum β-lactamase and the class C Pseudomonas aeruginosa AmpC β-lactamase, which together provide insight into the binding modes for the respective enzyme classes. The structures reveal similar binding modes in both enzymes and thus provide a rationale for the broad-spectrum inhibitory activity of avibactam. Identification of the key residues surrounding the binding pocket allows for a better understanding of the potency of this scaffold. Finally, avibactam has recently been shown to be a reversible inhibitor, and the structures provide insights into the mechanism of avibactam recyclization. Analysis of the ultra-high-resolution CTX-M-15 structure suggests how the deacylation mechanism favors recyclization over hydrolysis.
Chemistry & Biology | 2009
Jean Denis Docquier; Vito Calderone; Filomena De Luca; Manuela Benvenuti; Francesco Giuliani; Luca Bellucci; Andrea Tafi; Patrice Nordmann; Maurizio Botta; Gian Maria Rossolini; Stefano Mangani
Carbapenem-hydrolyzing class D beta-lactamases (CHDLs) are enzymes found in important Gram-negative pathogens (mainly Acinetobacter baumannii and Enterobacteriaceae) that confer resistance to beta-lactam antibiotics, and notably carbapenems. The crystal structure of the OXA-48 carbapenemase was determined at pH 7.5 and at a resolution of 1.9 A. Surprisingly, and by contrast with OXA-24, the only other CHDL of known crystal structure, the structure of OXA-48 was similar to OXA-10, an enzyme devoid of carbapenemase activity, indicating that the hydrolysis of these compounds could depend on subtle changes in the active site region. Moreover, the active site groove of OXA-48 was different from that of OXA-24 in shape, dimensions, and charge distribution. Molecular dynamics pointed to the functional relevance of residues located in or close to the beta5-beta6 loop and allowed us to propose a mechanism for carbapenem hydrolysis by OXA-48.
Antimicrobial Agents and Chemotherapy | 2008
Gian Maria Rossolini; Francesco Luzzaro; Roberta Migliavacca; Claudia Mugnaioli; Beatrice Pini; Filomena De Luca; Mariagrazia Perilli; Simona Pollini; Melissa Spalla; Gianfranco Amicosante; Antonio Toniolo; Laura Pagani
ABSTRACT Metallo-β-lactamases (MBLs) can confer resistance to most β-lactams, including carbapenems. Their emergence in gram-negative pathogens is a matter of major concern. Italy was the first European country to report the presence of acquired MBLs in gram-negative pathogens and is one of the countries where MBL producers have been detected repeatedly. Here, we present the results of the first Italian nationwide survey of acquired MBLs in gram-negative pathogens. Of 14,812 consecutive nonreplicate clinical isolates (12,245 Enterobacteriaceae isolates and 2,567 gram-negative nonfermenters) screened for reduced carbapenem susceptibility during a 4-month period (September to December 2004), 30 isolates (28 Pseudomonas aeruginosa isolates, 1 Pseudomonas putida isolate, and 1 Enterobacter cloacae isolate) carried acquired MBL determinants. MBL producers were detected in 10 of 12 cities, with a predominance of VIM-type enzymes over IMP-type enzymes (4:1). Although having an overall low prevalence (1.3%) and significant geographical differences, MBL-producing P. aeruginosa strains appeared to be widespread in Italy, with a notable diversity of clones, enzymes, and integrons carrying MBL gene cassettes.
Journal of Clinical Microbiology | 2006
Cristina Lagatolla; Elisabetta Edalucci; Lucilla Dolzani; Maria Letizia Riccio; Filomena De Luca; Erica Medessi; Gian Maria Rossolini; Enrico Angelo Tonin
ABSTRACT An outbreak of multidrug-resistant Pseudomonas aeruginosa strains producing VIM-type metallo-β-lactamases (MBLs) has occurred in an Italian hospital since 2000 (C. Lagatolla, E. A. Tonin, C. Monti-Bragadin, L. Dolzani, F. Gombac, C. Bearzi, E. Edalucci, F. Gionechetti, and G. M. Rossolini, Emerg. Infect. Dis. 10:535-538, 2004). In this work, using molecular methods, we characterized 128 carbapenem-resistant isolates (including 98 VIM-positive isolates) collected from that hospital from 2000 to 2002 to investigate the dynamics of the dissemination of MBL producers in the clinical setting. Genotyping by random amplification of polymorphic DNA and pulsed-field gel electrophoresis showed that most VIM-positive isolates belonged to two different clonal lineages, producing either a VIM-1- or a VIM-2-like MBL, whose ancestors were detected for the first time in the hospital in 1999, suggesting that clonal expansion played a predominant role in the dissemination of these isolates. The 86 clonally related isolates carrying a blaVIM-1-like gene on an In70-like integron were clearly related to a VIM-1-positive P. aeruginosa clone circulating in various Italian hospitals since the late 1990s. VIM-negative P. aeruginosa strains related to the VIM-1-positive clone were detected during the same period, suggesting that the latter strain was derived from a clonal lineage already circulating in the hospital. In the VIM-2-like positive clone, the MBL gene was carried by an unusual class 1 integron, named In71, lacking the 3′ conserved sequence region typical of sul1-associated integrons. A different class 1 integron with an original structure carrying a blaVIM-2 determinant, named In74, was detected in a sporadic isolate. A retrospective investigation did not reveal the presence of strains related to any of the VIM-producing isolates earlier than 1997.
ACS Chemical Biology | 2015
Sushmita D. Lahiri; Stefano Mangani; Haris Jahić; Manuela Benvenuti; Thomas F. Durand-Réville; Filomena De Luca; David E. Ehmann; Gian Maria Rossolini; Richard A. Alm; Jean Denis Docquier
The Class D (or OXA-type) β-lactamases have expanded to be the most diverse group of serine β-lactamases with a highly heterogeneous β-lactam hydrolysis profile and are typically resistant to marketed β-lactamase inhibitors. Class D enzymes are increasingly found in multidrug resistant (MDR) Acinetobacter baumannii, Pseudomonas aeruginosa, and various species of the Enterobacteriaceae and are posing a serious threat to the clinical utility of β-lactams including the carbapenems, which are typically reserved as the drugs of last resort. Avibactam, a novel non-β-lactam β-lactamase inhibitor, not only inhibits all class A and class C β-lactamases but also has the promise of inhibition of certain OXA enzymes, thus extending the antibacterial activity of the β-lactam used in combination to the organisms that produce these enzymes. X-ray structures of OXA-24 and OXA-48 in complex with avibactam revealed the binding mode of this inhibitor in this diverse class of enzymes and provides a rationale for selective inhibition of OXA-48 members. Additionally, various subunits of the OXA-48 structure in the asymmetric unit provide snapshots of different states of the inhibited enzyme. Overall, these data provide the first structural evidence of the exceptionally slow reversibility observed with avibactam in class D β-lactamases. Mechanisms for acylation and deacylation of avibactam by class D enzymes are proposed, and the likely extent of inhibition of class D β-lactamases by avibactam is discussed.
Antimicrobial Agents and Chemotherapy | 2010
Jean Denis Docquier; Manuela Benvenuti; Vito Calderone; Francesco Giuliani; Dimos Kapetis; Filomena De Luca; Gian Maria Rossolini; Stefano Mangani
ABSTRACT Class D β-lactamases represent a heterogeneous group of active-site serine β-lactamases that show an extraordinary panel of functional features and substrate profiles, thus representing relevant models for biochemical and structural studies. OXA-46 is a narrow-spectrum enzyme belonging to the OXA-2 subgroup which was found in a Pseudomonas aeruginosa clinical isolate from northern Italy. In this work, we obtained the three-dimensional structure of OXA-46, which shows the overall fold of active serine β-lactamases and a dimeric quaternary structure. Significant differences with currently available structures of class D β-lactamases were found in the loops located close to the active site, which differ in length and conformation. Interestingly, the three subunits present in the asymmetric unit showed some structural heterogeneity, only one of which presented a carbamylated lysine recognized as an important functional feature of class D enzymes. The carbamylation state of residue Lys75 appeared to be associated with different shapes and dimensions of the active site. Moreover, a tartrate molecule from the crystallization buffer was found in the active site of the noncarbamylated subunits, which interacts with catalytically relevant residues. The OXA-46 crystal asymmetric units thus interestingly present the structures of the free carbamylated active site and of the ligand-bound uncarbamylated active site, offering the structural basis for investigating the potential of new scaffolds of β-lactamase inhibitors.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Filomena De Luca; Manuela Benvenuti; Filippo Carboni; Cecilia Pozzi; Gian Maria Rossolini; Stefano Mangani; Jean Denis Docquier
Class D β-lactamases with carbapenemase activity are emerging as carbapenem-resistance determinants in Gram-negative bacterial pathogens, mostly Acinetobacter baumannii and Klebsiella pneumoniae. Carbapenemase activity is an unusual feature among class D β-lactamases, and the structural elements responsible for this activity remain unclear. Based on structural and molecular dynamics data, we previously hypothesized a potential role of the residues located in the short-loop connecting strands β5 and β6 (the β5–β6 loop) in conferring the carbapenemase activity of the OXA-48 enzyme. In this work, the narrow-spectrum OXA-10 class D β-lactamase, which is unable to hydrolyze carbapenems, was used as a model to investigate the possibility of evolving carbapenemase activity by replacement of the β5–β6 loop with those present in three different lineages of class D carbapenemases (OXA-23, OXA-24, and OXA-48). Biological assays and kinetic measurements showed that all three OXA-10–derived hybrids acquired significant carbapenemase activity. Structural analysis of the OXA-10loop24 and OXA-10loop48 hybrids revealed no significant changes in the molecular fold of the enzyme, except for the orientation of the substituted β5–β6 loops, which was reminiscent of that found in their parental enzymes. These results demonstrate the crucial role of the β5–β6 loop in the carbapenemase activity of class D β-lactamases, and provide previously unexplored insights into the mechanism by which these enzymes can evolve carbapenemase activity.
Antimicrobial Agents and Chemotherapy | 2010
Laurent Poirel; Jean Denis Docquier; Filomena De Luca; Annemie Verlinde; Louis Ide; Gian Maria Rossolini; Patrice Nordmann
ABSTRACT A Pseudomonas aeruginosa isolate recovered in Belgium produced a novel extended-spectrum ß-lactamase, BEL-2, differing from BEL-1 by a single Leu162Phe substitution. That modification significantly altered the kinetic properties of the enzyme, increasing its affinity for expanded-spectrum cephalosporins. The blaBEL-2 gene was identified from a P. aeruginosa isolate clonally related to another blaBEL-1-positive isolate.
Journal of Clinical Microbiology | 2005
Claudia Mugnaioli; Francesco Luzzaro; Filomena De Luca; Gioconda Brigante; Gianfranco Amicosante; Gian Maria Rossolini
ABSTRACT A Citrobacter amalonaticus and a Morganella morganii producing the CTX-M-1 extended-spectrum β-lactamase (ESBL) were isolated from an area where this enzyme is now widespread in Escherichia coli. This is the first report of CTX-M-1 in the former species. In both cases the ESBL determinant was possibly acquired by these unusual hosts in vivo, after coinfection with E. coli strains carrying conjugative plasmids encoding CTX-M-1.