Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Filomena Mazzei is active.

Publication


Featured researches published by Filomena Mazzei.


Mutation Research | 2013

Role of MUTYH in human cancer

Filomena Mazzei; Alessandra Viel; Margherita Bignami

MUTYH, a human ortholog of MutY, is a post-replicative DNA glycosylase, highly conserved throughout evolution, involved in the correction of mismatches resulting from a faulty replication of the oxidized base 8-hydroxyguanine (8-oxodG). In particular removal of adenine from A:8-oxodG mispairs by MUTYH activity is followed by error-free base excision repair (BER) events, leading to the formation of C:8-oxodG base pairs. These are the substrate of another BER enzyme, the OGG1 DNA glycosylase, which then removes 8-oxodG from DNA. Thus the combined action of OGG1 and MUTYH prevents oxidative damage-induced mutations, i.e. GC->TA transversions. Germline mutations in MUTYH are associated with a recessively heritable colorectal polyposis, now referred to as MUTYH-associated polyposis (MAP). Here we will review the phenotype(s) associated with MUTYH inactivation from bacteria to mammals, the structure of the MUTYH protein, the molecular mechanisms of its enzymatic activity and the functional characterization of MUTYH variants. The relevance of these results will be discussed to define the role of specific human mutations in colorectal cancer risk together with the possible role of MUTYH inactivation in sporadic cancer.


Nucleic Acids Research | 2005

8-Oxoguanine incorporation into DNA repeats in vitro and mismatch recognition by MutSα

Peter Macpherson; Flavia Barone; Giovanni Maga; Filomena Mazzei; Peter Karran; Margherita Bignami

DNA 8-oxoguanine (8-oxoG) causes transversions and is also implicated in frameshifts. We previously identified the dNTP pool as a likely source of mutagenic DNA 8-oxoG and demonstrated that DNA mismatch repair prevented oxidation-related frameshifts in mononucleotide repeats. Here, we show that both Klenow fragment and DNA polymerase α can utilize 8-oxodGTP and incorporate the oxidized purine into model frameshift targets. Both polymerases incorporated 8-oxodGMP opposite C and A in repetitive DNA sequences and efficiently extended a terminal 8-oxoG. The human MutSα mismatch repair factor recognized DNA 8-oxoG efficiently in some contexts that resembled frameshift intermediates in the same C or A repeats. DNA 8-oxoG in other slipped/mispaired structures in the same repeats adopted configurations that prevented recognition by MutSα and by the OGG1 DNA glycosylase thereby rendering it invisible to DNA repair. These findings are consistent with a contribution of oxidative DNA damage to frameshifts. They also suggest how mismatch repair might reduce the burden of DNA 8-oxoG and prevent frameshift formation.


Cancer Research | 2009

Role of MUTYH and MSH2 in the Control of Oxidative DNA Damage, Genetic Instability, and Tumorigenesis

Maria Teresa Russo; Gabriele De Luca; Ida Casorelli; Paolo Degan; Sara Molatore; Flavia Barone; Filomena Mazzei; Tania Pannellini; Piero Musiani; Margherita Bignami

Mismatch repair is the major pathway controlling genetic stability by removing mispairs caused by faulty replication and/or mismatches containing oxidized bases. Thus, inactivation of the Msh2 mismatch repair gene is associated with a mutator phenotype and increased cancer susceptibility. The base excision repair gene Mutyh is also involved in the maintenance of genomic integrity by repairing premutagenic lesions induced by oxidative DNA damage. Because evidence in bacteria suggested that Msh2 and Mutyh repair factors might have some overlapping functions, we investigated the biological consequences of their single and double inactivation in vitro and in vivo. Msh2(-/-) mouse embryo fibroblasts (MEF) showed a strong mutator phenotype at the hprt gene, whereas Mutyh inactivation was associated with a milder phenotype (2.9 x 10(-6) and 3.3 x 10(-7) mutation/cell/generation, respectively). The value of 2.7 x 10(-6) mutation/cell/generation in Msh2(-/-)Mutyh(-/-) MEFs did not differ significantly from Msh2(-/-) cells. When steady-state levels of DNA 8-oxo-7,8-dihydroguanine (8-oxoG) were measured in MEFs of different genotypes, single gene inactivation resulted in increases similar to those observed in doubly defective cells. In contrast, a synergistic accumulation of 8-oxoG was observed in several organs of Msh2(-/-)Mutyh(-/-) animals, suggesting that in vivo Msh2 and Mutyh provide separate repair functions and contribute independently to the control of oxidative DNA damage. Finally, a strong delay in lymphomagenesis was observed in Msh2(-/-)Mutyh(-/-) when compared with Msh2(-/-) animals. The immunophenotype of these tumors indicate that both genotypes develop B-cell lymphoblastic lymphomas displaying microsatellite instability. This suggests that a large fraction of the cancer-prone phenotype of Msh2(-/-) mice depends on Mutyh activity.


Human Mutation | 2010

MUTYH mutations associated with familial adenomatous polyposis: functional characterization by a mammalian cell-based assay†

Sara Molatore; Maria Teresa Russo; Vito G. D'Agostino; Flavia Barone; Yoshihiro Matsumoto; Alessandra M. Albertini; Anna Minoprio; Paolo Degan; Filomena Mazzei; Margherita Bignami; Guglielmina Nadia Ranzani

MUTYH‐associated polyposis (MAP) is a colorectal cancer syndrome, due to biallelic mutations of MUTYH. This Base Excision Repair gene encodes for a DNA glycosylase that specifically mitigates the high mutagenic potential of the 8‐hydroxyguanine (8‐oxodG) along the DNA. Aim of this study was to characterize the biological effects, in a mammalian cell background, of human MUTYH mutations identified in MAP patients (137insIW [c.411_416dupATGGAT; p.137insIleTrp]; R171W [c.511C>T; p.Arg171Trp]; E466del [c.1395_1397delGGA; p.Glu466del]; Y165C [c.494A>G; p.Tyr165Cys]; and G382D [c.1145G>A; p.Gly382Asp]). We set up a novel assay in which the human proteins were expressed in Mutyh−/− mouse defective cells. Several parameters, including accumulation of 8‐oxodG in the genome and hypersensitivity to oxidative stress, were then used to evaluate the consequences of MUTYH expression. Human proteins were also obtained from Escherichia coli and their glycosylase activity was tested in vitro. The cell‐based analysis demonstrated that all MUTYH variants we investigated were dysfunctional in Base Excision Repair. In vitro data complemented the in vivo observations, with the exception of the G382D mutant, which showed a glycosylase activity very similar to the wild‐type protein. Our cell‐based assay can provide useful information on the significance of MUTYH variants, improving molecular diagnosis and genetic counseling in families with mutations of uncertain pathogenicity. Hum Mutat 30:1–8, 2009.


DNA Repair | 2010

Functional analysis of MUTYH mutated proteins associated with familial adenomatous polyposis

Vito G. D’Agostino; Anna Minoprio; Paola Torreri; Ilaria Marinoni; Cecilia Bossa; Tamara C. Petrucci; Alessandra M. Albertini; Guglielmina Nadia Ranzani; Margherita Bignami; Filomena Mazzei

The MUTYH DNA glycosylase specifically removes adenine misincorporated by replicative polymerases opposite the oxidized purine 8-oxo-7,8-dihydroguanine (8-oxoG). A defective protein activity results in the accumulation of G>T transversions because of unrepaired 8-oxoG:A mismatches. In humans, MUTYH germline mutations are associated with a recessive form of familial adenomatous polyposis and colorectal cancer predisposition (MUTYH-associated polyposis, MAP). Here we studied the repair capacity of the MUTYH variants R171W, E466del, 137insIW, Y165C and G382D, identified in MAP patients. Following expression and purification of human proteins from a bacterial system, we investigated MUTYH incision capacity on an 8-oxoG:A substrate by standard glycosylase assays. For the first time, we employed the surface plasmon resonance (SPR) technology for real-time recording of the association/dissociation of wild-type and MUTYH variants from an 8-oxoG:A DNA substrate. When compared to the wild-type protein, R171W, E466del and Y165C variants showed a severe reduction in the binding affinity towards the substrate, while 137insIW and G382D mutants manifested only a slight decrease mainly due to a slower rate of association. This reduced binding was always associated with impairment of glycosylase activity, with adenine removal being totally abrogated in R171W, E466del and Y165C and only partially reduced in 137insIW and G382D. Our findings demonstrate that SPR analysis is suitable to identify defective enzymatic behaviour even when mutant proteins display minor alterations in substrate recognition.


Mutation Research | 2012

Gene susceptibility to oxidative damage: From single nucleotide polymorphisms to function

Valeria Simonelli; Filomena Mazzei; Mariarosaria D’Errico; Eugenia Dogliotti

Oxidative damage to DNA can cause mutations, and mutations can lead to cancer. DNA repair of oxidative damage should therefore play a pivotal role in defending humans against cancer. This is exemplified by the increased risk of colorectal cancer of patients with germ-line mutations of the oxidative damage DNA glycosylase MUTYH. In contrast to germ-line mutations in DNA repair genes, which cause a strong deficiency in DNA repair activity in all cell types, the role of single nucleotide polymorphisms (SNPs) in sporadic cancer is unclear also because deficiencies in DNA repair, if any, are expected to be much milder. Further slowing down progress are the paucity of accurate and reproducible functional assays and poor epidemiological design of many studies. This review will focus on the most common and widely studied SNPs of oxidative DNA damage repair proteins trying to bridge the information available on biochemical and structural features of the repair proteins with the functional effects of these variants and their potential impact on the pathogenesis of disease.


Free Radical Biology and Medicine | 2013

Genotype-phenotype analysis of S326C OGG1 polymorphism: a risk factor for oxidative pathologies.

Valeria Simonelli; Serena Camerini; Filomena Mazzei; Barbara van Loon; Alessandra Allione; Mariarosaria D'Errico; Flavia Barone; Anna Minoprio; Fulvio Ricceri; Simonetta Guarrera; Alessia Russo; Bjørn Dalhus; Marco Crescenzi; Ulrich Hübscher; Magnar Bjørås; Giuseppe Matullo; Eugenia Dogliotti

8-Oxoguanine DNA glycosylase (OGG) activity was measured by an in vitro assay in lymphocytes of healthy volunteers genotyped for various OGG1 polymorphisms. Only homozygous carriers of the polymorphic C326 allele showed a significantly lower OGG activity compared to the homozygous S326 genotype. The purified S326C OGG1 showed a decreased ability to complete the repair synthesis step in a base excision repair reaction reconstituted in vitro. The propensity of this variant to dimerize as well as its catalytic impairment were shown to be enhanced under oxidizing conditions. Mass spectrometry revealed that the extra cysteine of the variant protein is involved in disulfide bonds compatible with significant conformational changes and/or dimerization. We propose that the S326C OGG1 catalytic impairment and its susceptibility to dimerization and disulfide bond formation in an oxidizing environment all concur to decrease repair capacity. Consequently, the C326 homozygous carriers may be at increased risk of oxidative pathologies.


Nucleic Acids Research | 2013

Understanding the role of the Q338H MUTYH variant in oxidative damage repair

Eleonora Turco; Ilenia Ventura; Anna Minoprio; Maria Teresa Russo; Paola Torreri; Paolo Degan; Sara Molatore; Guglielmina Nadia Ranzani; Margherita Bignami; Filomena Mazzei

The MUTYH DNA–glycosylase is indirectly engaged in the repair of the miscoding 7,8-dihydro-8-oxo-2′-deoxyguanine (8-oxodG) lesion by removing adenine erroneously incorporated opposite the oxidized purine. Inherited biallelic mutations in the MUTYH gene are responsible for a recessive syndrome, the MUTYH-associated polyposis (MAP), which confers an increased risk of colorectal cancer. In this study, we functionally characterized the Q338H variant using recombinant proteins, as well as cell-based assays. This is a common variant among human colorectal cancer genes, which is generally considered, unrelated to the MAP phenotype but recently indicated as a low-penetrance allele. We demonstrate that the Q338H variant retains a wild-type DNA–glycosylase activity in vitro, but it shows a reduced ability to interact with the replication sensor RAD9:RAD1:HUS1 (9–1–1) complex. In comparison with Mutyh−/− mouse embryo fibroblasts expressing a wild-type MUTYH cDNA, the expression of Q338H variant was associated with increased levels of DNA 8-oxodG, hypersensitivity to oxidant and accumulation of the population in the S phase of the cell cycle. Thus, an inefficient interaction of MUTYH with the 9–1–1 complex leads to a repair-defective phenotype, indicating that a proper communication between MUTYH enzymatic function and the S phase checkpoint is needed for effective repair of oxidative damage.


Oncogene | 2013

Loss of MUTYH function in human cells leads to accumulation of oxidative damage and genetic instability

V Ruggieri; E Pin; Maria Teresa Russo; F Barone; P Degan; Massimo Sanchez; M Quaia; Anna Minoprio; E Turco; Filomena Mazzei; Alessandra Viel; Margherita Bignami

The DNA glycosylase MUTYH (mutY homolog (Escherichia coli)) counteracts the mutagenic effects of 8-oxo-7,8-dihydroguanine (8-oxodG) by removing adenine (A) misincorporated opposite the oxidized purine. Biallelic germline mutations in MUTYH cause the autosomal recessive MUTYH-associated adenomatous polyposis (MAP). Here we designed new tools to investigate the biochemical defects and biological consequences associated with different MUTYH mutations in human cells. To identify phenotype(s) associated with MUTYH mutations, lymphoblastoid cell lines (LCLs) were derived from seven MAP patients harboring missense as well as truncating mutations in MUTYH. These included homozygous p.Arg245His, p.Gly264TrpfsX7 or compound heterozygous variants (p.Gly396Asp/Arg245Cys, p.Gly396Asp/Tyr179Cys, p.Gly396Asp/Glu410GlyfsX43, p.Gly264TrpfsX7/Ala385ProfsX23 and p.Gly264TrpfsX7/Glu480del). DNA glycosylase assays of MAP LCL extracts confirmed that all these variants were defective in removing A from an 8-oxoG:A DNA substrate, but retained wild-type OGG1 activity. As a consequence of this defect, MAP LCLs accumulated DNA 8-oxodG in their genome and exhibited a fourfold increase in spontaneous mutagenesis at the PIG-A gene compared with LCLs from healthy donors. They were also hypermutable by KBrO3—a source of DNA 8-oxodG—indicating that the relatively modest spontaneous mutator phenotype associated with MUTYH loss can be significantly enhanced by conditions of oxidative stress. These observations identify accumulation of DNA 8-oxodG and a mutator phenotype as likely contributors to the pathogenesis of MUTYH variants.


Biophysical Chemistry | 2000

DNA, RNA and hybrid RNA-DNA oligomers of identical sequence: structural and dynamic differences.

Flavia Barone; Luciano Cellai; Mirella Matzeu; Filomena Mazzei; Francesco Pedone

A 27-mer sequence was synthesised as DNA duplex (DD), RNA duplex (RR), and RNA-DNA (RD) hybrid in order to characterise their structural and dynamic features. The hydrodynamic radius (Rh) and the rise (b) values of the three samples were consistent with the conformations predicted by CD analysis. The value of the torsional constant (alpha) of the samples containing RNA was approximately twice that of the DD sample and followed the order: DD < RD < RR. The same order was observed in the thermodynamic stability and in the reduction of the electrophoretic mobility. gamma-Ray footprinting analysis was carried out to resolve the individual strand conformation in the hybrid. The RNA strand preserved its conformation, while the DNA strand showed local deformations mainly at TA and TG steps.

Collaboration


Dive into the Filomena Mazzei's collaboration.

Top Co-Authors

Avatar

Flavia Barone

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Anna Minoprio

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugenia Dogliotti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Francesco Pedone

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Valeria Simonelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Mirella Matzeu

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge