Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fin J. Milder is active.

Publication


Featured researches published by Fin J. Milder.


Nature Reviews Immunology | 2008

Complement driven by conformational changes

Piet Gros; Fin J. Milder; Bert J. C. Janssen

Complement in mammalian plasma recognizes pathogenic, immunogenic and apoptotic cell surfaces, promotes inflammatory responses and marks particles for cell lysis, phagocytosis and B-cell stimulation. At the heart of the complement system are two large proteins, complement component C3 and protease factor B. These two proteins are pivotal for amplification of the complement response and for labelling of the target particles, steps that are required for effective clearance of the target. Here we review the molecular mechanisms of complement activation, in which proteolysis and complex formation result in large conformational changes that underlie the key offensive step of complement executed by C3 and factor B. Insights into the mechanisms of complement amplification are crucial for understanding host defence and pathogen immune evasion, and for the development of complement-immune therapies.


Journal of Molecular Medicine | 2010

Complement inhibition by gram-positive pathogens: molecular mechanisms and therapeutic implications

Alexander J. Laarman; Fin J. Milder; Jos A. G. van Strijp; Suzan H M Rooijakkers

The plasma proteins of the complement system are essential in the innate immune response against bacteria. Complement labels bacteria with opsonins to support phagocytosis and generates chemoattractants to attract phagocytes to the site of infection. In turn, bacterial human pathogens have evolved different strategies to specifically impair the complement response. Here, we review the large arsenal of complement inhibitors produced by the gram-positive pathogens Staphylococcus aureus and Group A Streptococcus. We discuss how these bacterial molecules provide us with new tools to treat both infectious and inflammatory disease conditions in humans.


Nature Structural & Molecular Biology | 2007

Factor B structure provides insights into activation of the central protease of the complement system

Fin J. Milder; Lucio Gomes; Arie Schouten; Bert J. C. Janssen; Eric G. Huizinga; Roland A. Romijn; Wieger Hemrika; Anja Roos; Mohamed R. Daha; Piet Gros

Factor B is the central protease of the complement system of immune defense. Here, we present the crystal structure of human factor B at 2.3-Å resolution, which reveals how the five-domain proenzyme is kept securely inactive. The canonical activation helix of the Von Willebrand factor A (VWA) domain is displaced by a helix from the preceding domain linker. The two helices conformationally link the scissile-activation peptide and the metal ion–dependent adhesion site required for binding of the ligand C3b. The data suggest that C3b binding displaces the three N-terminal control domains and reshuffles the two central helices. Reshuffling of the helices releases the scissile bond for final proteolytic activation and generates a new interface between the VWA domain and the serine protease domain. This allosteric mechanism is crucial for tight regulation of the complement-amplification step in the immune response.


Journal of Immunology | 2012

Pseudomonas aeruginosa Alkaline Protease Blocks Complement Activation via the Classical and Lectin Pathways

Alexander J. Laarman; Bart W. Bardoel; Maartje Ruyken; Job Fernie; Fin J. Milder; Jos A. G. van Strijp; Suzan H.M. Rooijakkers

The complement system rapidly detects and kills Gram-negative bacteria and supports bacterial killing by phagocytes. However, bacterial pathogens exploit several strategies to evade detection by the complement system. The alkaline protease (AprA) of Pseudomonas aeruginosa has been associated with bacterial virulence and is known to interfere with complement-mediated lysis of erythrocytes, but its exact role in bacterial complement escape is unknown. In this study, we analyzed how AprA interferes with complement activation and whether it could block complement-dependent neutrophil functions. We found that AprA potently blocked phagocytosis and killing of Pseudomonas by human neutrophils. Furthermore, AprA inhibited opsonization of bacteria with C3b and the formation of the chemotactic agent C5a. AprA specifically blocked C3b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. In summary, we showed that P. aeruginosa AprA interferes with classical and lectin pathway-mediated complement activation via cleavage of C2.


Journal of Immunology | 2007

Staphylococcal Complement Inhibitor: Structure and Active Sites

Suzan H.M. Rooijakkers; Fin J. Milder; Bart W. Bardoel; Maartje Ruyken; Jos A. G. van Strijp; Piet Gros

The pathogenic bacterium Staphylococcus aureus counteracts the host immune defense by excretion of the 85 residue staphylococcal complement inhibitor (SCIN). SCIN inhibits the central complement convertases; thereby, it reduces phagocytosis following opsonization and efficiently blocks all downstream effector functions. In this study, we present the crystal structure of SCIN at 1.8 Å resolution and the identification of its active site. Functional characterization of structure based chimeric proteins, consisting of SCIN and the structurally but nonfunctional homologue open reading frame-D, indicate an 18-residue segment (Leu-31—Gly-48) crucial for SCIN activity. In all complement activation pathways, chimeras lacking these SCIN residues completely fail to inhibit production of the potent mediator of inflammation C5a. Inhibition of alternative pathway-mediated opsonization (C3b deposition) and formation of the lytic membrane attack complex (C5b-9 deposition) are strongly reduced for these chimeras as well. For inhibition of the classical/lectin pathway-mediated C3b and C5b-9 deposition, the same residues are critical although additional sites are involved. These chimeras also display reduced capacity to stabilize the C3 convertases of both the alternative and the classical/lectin pathway indicating the stabilizing effect is pivotal for the complement inhibitory activity of SCIN. Because SCIN specifically and efficiently inhibits complement, it has a high potential in anti-inflammatory therapy. Our data are a first step toward the development of a second generation molecule suitable for such therapeutic complement intervention.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors

Daphne A.C. Stapels; Kasra X. Ramyar; Markus Bischoff; Maren von Köckritz-Blickwede; Fin J. Milder; Maartje Ruyken; Janina Eisenbeis; William J. McWhorter; Kok P. M. van Kessel; Brian V. Geisbrecht; Suzan H.M. Rooijakkers

Significance Neutrophils are among the first immune cells to migrate to the site of infection and clear invading bacteria. They store large amounts of neutrophil serine proteases (NSPs) that play key roles in immune defense. Unfortunately, NSPs also contribute to tissue destruction in a variety of inflammatory disorders. In this study we discover that the pathogenic bacterium Staphylococcus aureus secretes a family of highly potent and specific NSP inhibitors that promote the pathogenicity of this bacterium in vivo. From crystallography experiments, we conclude that these proteins constitute a unique class of NSP inhibitors, which can be used to design novel treatment strategies against excessive NSP activity. Furthermore, this study significantly increases our understanding of the complex nature of S. aureus infections. Neutrophils are indispensable for clearing infections with the prominent human pathogen Staphylococcus aureus. Here, we report that S. aureus secretes a family of proteins that potently inhibits the activity of neutrophil serine proteases (NSPs): neutrophil elastase (NE), proteinase 3, and cathepsin G. The NSPs, but not related serine proteases, are specifically blocked by the extracellular adherence protein (Eap) and the functionally orphan Eap homologs EapH1 and EapH2, with inhibitory-constant values in the low-nanomolar range. Eap proteins are together essential for NSP inhibition by S. aureus in vitro and promote staphylococcal infection in vivo. The crystal structure of the EapH1/NE complex showed that Eap molecules constitute a unique class of noncovalent protease inhibitors that occlude the catalytic cleft of NSPs. These findings increase our insights into the complex pathogenesis of S. aureus infections and create opportunities to design novel treatment strategies for inflammatory conditions related to excessive NSP activity.


Journal of Molecular Biology | 2012

Inhibition of Pseudomonas aeruginosa Virulence: Characterization of the AprA–AprI Interface and Species Selectivity

Bart W. Bardoel; Kok P. M. van Kessel; Jos A. G. van Strijp; Fin J. Milder

Pseudomonas aeruginosa secretes the virulence factor alkaline protease (AprA) to enhance its survival. AprA cleaves one of the key microbial recognition molecules, monomeric flagellin, and thereby diminishes Toll-like receptor 5 activation. In addition, AprA degrades host proteins such as complement proteins and cytokines. P. aeruginosa encodes a highly potent inhibitor of alkaline protease (AprI) that is solely located in the periplasm where it is presumed to protect periplasmic proteins against secreted AprA. We set out to study the enzyme-inhibitor interactions in more detail in order to provide a basis for future drug development. Structural and mutational studies reveal that the conserved N-terminal residues of AprI occupy the protease active site and are essential for inhibitory activity. We constructed peptides mimicking the N-terminus of AprI; however, these were incapable of inhibiting AprA-mediated flagellin cleavage. Furthermore, we expressed and purified AprI of P. aeruginosa and the homologous (37% sequence identity) AprI of Pseudomonas syringae, which remarkably show species specificity for their cognate protease. Exchange of the first five N-terminal residues between AprI of P. syringae and P. aeruginosa did not affect the observed specificity, whereas exchange of only six residues located at the AprI surface that contacts the protease did abolish specificity. These findings are elementary steps toward the design of molecules derived from the natural inhibitor of the virulence factor AprA and their use in therapeutic applications in Pseudomonas and other Gram-negative infections.


Applied Microbiology and Biotechnology | 2015

Versatile vector suite for the extracytoplasmic production and purification of heterologous His-tagged proteins in Lactococcus lactis.

Jolanda Neef; Fin J. Milder; Danny G. A. M. Koedijk; Marindy Klaassens; Erik Heezius; Jos A. G. van Strijp; Andreas Otto; Doerte Becher; Jan Maarten van Dijl; Girbe Buist

Recent studies have shown that the Gram-positive bacterium Lactococcus lactis can be exploited for the expression of heterologous proteins; however, a versatile set of vectors suitable for inducible extracellular protein production and subsequent purification of the expressed proteins by immobilized metal affinity chromatography was so far lacking. Here we describe three novel vectors that, respectively, facilitate the nisin-inducible production of N- or C-terminally hexa-histidine (His6)-tagged proteins in L. lactis. One of these vectors also encodes a tobacco etch virus (TEV) protease cleavage site allowing removal of the N-terminal His6-tag from expressed proteins. Successful application of the developed vectors for protein expression, purification and/or functional studies is exemplified with six different cell wall-bound or secreted proteins from Staphylococcus aureus. The results show that secretory production of S. aureus proteins is affected by the position, N- or C-terminal, of the His6-tag. This seems to be due to an influence of the His6-tag on protein stability. Intriguingly, the S. aureus IsdB protein, which is phosphorylated in S. aureus, was also found to be phosphorylated when heterologously produced in L. lactis, albeit not on the same Tyr residue. This implies that this particular post-translational protein modification is to some extent conserved in S. aureus and L. lactis. Altogether, we are confident that the present vector set combined with the L. lactis expression host has the potential to become a very useful tool in optimization of the expression, purification and functional analysis of extracytoplasmic bacterial proteins.


Immunology Letters | 2012

Fusion of the Fc part of human IgG1 to CD14 enhances its binding to Gram-negative bacteria and mediates phagocytosis by Fc receptors of neutrophils

András Vida; Bart W. Bardoel; Fin J. Milder; László Majoros; Andrea Sümegi; Attila Bacsi; György Vereb; Kok P. M. van Kessel; Jos A. G. van Strijp; Péter Antal-Szalmás

Microbial resistance to antimicrobial drugs is promoting a search for new antimicrobial agents that target highly conservative structures of pathogens. Human CD14 - a known pattern recognition receptor (PRR) which recognizes multiple ligands from different microbes might be a worthy candidate. The aim of our work was to create a CD14/Fc dimer protein and evaluate its whole bacteria binding and opsonizing capabilities. Fusion of CD14 with the fragment crystallisable (Fc) part of human IgG1 could not only lead to an artificial opsonin but the dimerization through the Fc part might also increase its affinity to different ligands. Human CD14 and the Fc part of human IgG1 was fused and expressed in HEK293 cells. A histidine tagged CD14 (CD14/His) was also expressed as control. Using flow cytometry we could prove that CD14/Fc bound to whole Gram-negative bacteria, especially to short lipopolysaccharide (Ra and Re) mutants, and weak interaction was observed between the fusion protein and Listeria monocytogenes. Other Gram-positive bacteria and fungi did not show any association with CD14/Fc. CD14/His showed about 50-times less potent binding to Gram-negative bacteria. CD14/Fc acted as an opsonin and enhanced phagocytosis of these bacteria by neutrophil granulocytes, monocyte-derived macrophages and dendritic cells. Internalization of bacteria was confirmed by trypan blue quenching and confocal microscopy. On neutrophils the Fc part of the fusion protein was recognized by Fc receptors (CD16, CD32), as determined by blocking experiments. CD14/Fc enhanced the killing of bacteria in an ex vivo whole blood assay. Our experiments confirm that PRR/Fc fusion proteins can give a boost to FcR dependent phagocytosis and killing provided the antimicrobial part binds efficiently to microbes.


Protein Science | 2018

Evidence for multiple modes of neutrophil serine protease recognition by the EAP family of Staphylococcal innate immune evasion proteins

Daphne A.C. Stapels; Jordan L. Woehl; Fin J. Milder; Angelino T. Tromp; Aernoud A. van Batenburg; Wilco C. de Graaf; Samuel C. Broll; Natalie M. White; Suzan H.M. Rooijakkers; Brian V. Geisbrecht

Neutrophils contain high levels of chymotrypsin‐like serine proteases (NSPs) within their azurophilic granules that have a multitude of functions within the immune system. In response, the pathogen Staphylococcus aureus has evolved three potent inhibitors (Eap, EapH1, and EapH2) that protect the bacterium as well as several of its secreted virulence factors from the degradative action of NSPs. We previously showed that these so‐called EAP domain proteins represent a novel class of NSP inhibitors characterized by a non‐covalent inhibitory mechanism and a distinct target specificity profile. Based upon high levels of structural homology amongst the EAP proteins and the NSPs, as well as supporting biochemical data, we predicted that the inhibited complex would be similar for all EAP/NSP pairs. However, we present here evidence that EapH1 and EapH2 bind the canonical NSP, Neutrophil Elastase (NE), in distinct orientations. We discovered that alteration of EapH1 residues at the EapH1/NE interface caused a dramatic loss of affinity and inhibition of NE, while mutation of equivalent positions in EapH2 had no effect on NE binding or inhibition. Surprisingly, mutation of residues in an altogether different region of EapH2 severely impacted both the NE binding and inhibitory properties of EapH2. Even though EapH1 and EapH2 bind and inhibit NE and a second NSP, Cathepsin G, equally well, neither of these proteins interacts with the structurally related, but non‐proteolytic granule protein, azurocidin. These studies expand our understanding of EAP/NSP interactions and suggest that members of this immune evasion protein family are capable of diverse target recognition modes.

Collaboration


Dive into the Fin J. Milder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Roos

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge