Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Finn Kjellberg is active.

Publication


Featured researches published by Finn Kjellberg.


Proceedings of the Royal Society of London B: Biological Sciences | 2001

Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps

Carlos A. Machado; Enmmannelle Jousselin; Finn Kjellberg; Stephen G. Compton; Edward Allen Herre

Nucleotide sequences from the cytochrome oxidase I (COI) gene were used to reconstruct phylogenetic relationships among 15 genera of fig–pollinating wasps. We present evidence supporting broad–level cocladogenesis with respect to most but not all of the corresponding groups of figs. Using fossil evidence for calibrating a molecular clock for these data, we estimated the origin of the fig–wasp mutualism to have occurred ca. 90 million years ago. The estimated divergence times among the pollinator genera and their current geographical distributions corresponded well with several features of the break–up of the southern continents during the Late Cretaceous period. We then explored the evolutionary trajectories of two characteristics that hold profound consequences for both partners in the mutualism: the breeding system of the host (monoecious or dioecious) and pollination behaviour of the wasp (passive or active). The fig–wasp mutualism exhibits extraordinarily long–term evolutionary stability despite clearly identifiable conflicts of interest between the interactors, which are reflected by the very distinct variations found on the basic mutualistic theme.


Systematic Biology | 2012

An Extreme Case of Plant-Insect Codiversification: Figs and Fig-Pollinating Wasps

Astrid Cruaud; Nina Rønsted; Bhanumas Chantarasuwan; Lien-Siang Chou; Wendy L. Clement; Arnaud Couloux; Benjamin R. Cousins; Gwenaëlle Genson; Rhett D. Harrison; Paul Hanson; Martine Hossaert-McKey; Roula Jabbour-Zahab; Emmanuelle Jousselin; Carole Kerdelhué; Finn Kjellberg; Carlos Lopez-Vaamonde; John Peebles; Yan-Qiong Peng; Rodrigo Augusto Santinelo Pereira; Tselil Schramm; Rosichon Ubaidillah; Simon van Noort; George D. Weiblen; Da Rong Yang; Anak Yodpinyanee; Ran Libeskind-Hadas; James M. Cook; Jean Yves Rasplus; Vincent Savolainen

It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale cophylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on an average, wasps had sequences from 77% of 6 genes (5.6 kb), figs had sequences from 60% of 5 genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based cophylogenetic analyses further support the codiversification hypothesis. Biogeographic analyses indicate that the present-day distribution of fig and pollinator lineages is consistent with a Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term codiversification. [Biogeography; coevolution; cospeciation; host switching; long-branch attraction; phylogeny.].


Evolution | 1987

THE STABILITY OF THE SYMBIOSIS BETWEEN DIOECIOUS FIGS AND THEIR POLLINATORS: A STUDY OF FICUS CARICA L. AND BLASTOPHAGA PSENES L.

Finn Kjellberg; P.-H. Gouyon; M. Ibrahim; M. Raymond; G. Valdeyron

Each Ficus species depends on a specific mutualistic wasp for pollination. The wasp breeds on the fig, each larva destroying a female flower. It is, however, not known why the wasps have not evolved the ability to use all female flowers. In “dioecious” figs, the wasp can only breed in the female flowers of the “male” trees, so that pollination of a female tree is always lethal. The wasps should therefore be selected to avoid female trees. Field data is presented showing that the fruiting phenology of the dioecious fig Ficus carica is such that this selection does not occur: syconia are not receptive at the same time on “male” and female trees. Most wasps are forced to emerge from the syconia of “male” trees at a time when they will not be able to reproduce, whether they avoid female trees or not. This aspect of the life cycle of the wasp, although noticed, has been obscured in most previous studies. It is shown that the fruiting phenology of Ficus carica, which stabilizes the symbiosis, is the result of short‐term selective pressures on the male function of the trees. Such selective pressures suggest a possible pathway from monoecy to dioecy in Ficus under seasonal climates.


Evolution | 2003

CONVERGENCE AND COEVOLUTION IN A MUTUALISM: EVIDENCE FROM A MOLECULAR PHYLOGENY OF FICUS

Emmanuelle Jousselin; Jean-Yves Rasplus; Finn Kjellberg

Abstract The interaction between Ficus (Moraceae) and their pollinating wasps (Chalcidoidea: Agaonidae; more than 700 species-specific couples) is one of the most specialized mutualisms found in nature. Both partners of this interaction show extensive variation in their respective biology. Here we investigate Ficus life-history trait evolution and fig/fig wasp coadaptation in the context of a well-resolved molecular phylogeny. Mapping out variations in Ficus life-history traits on an independently derived phylogeny constructed from ribosomal DNA sequences (external and internal transcribed spacer) reveals several parallel transitions in Ficus growth habit and breeding system. Convergent trait evolution might explain the discrepancies between morphological analyses and our molecular reconstruction of the genus. Morphological characters probably correlate with growth habit and breeding system and could therefore be subject to convergent evolution. Furthermore, we reconstruct the evolution of Ficus inflorescence characters that are considered adaptations to the pollinators. Our phylogeny reveals convergences in ostiole shape, stigma morphology, and stamen:ovule ratio. Statistical tests taking into account the phylogenetic relationship of the species show that transitions in ostiole shape are correlated with variation in wasp pollinator head shape, and evolutionary changes in stigma morphology and stamen:ovule ratio correlate with changes in the pollination behavior of the associated wasp. These correlations provide evidence for reciprocal adaptations of morphological characters between these mutualistic partners that have interacted over a long evolutionary time. In light of previous ecological studies on mutualism, we discuss the adaptive significance of these correlations and what they can tell us about the coevolutionary process occurring between figs and their pollinators.


Ecology | 1990

The Ecological Consequences of Flowering Asynchrony in Monoecious Figs: A Simulation Study

Judith L. Bronstein; Pierre-Henri Gouyon; Chris Gliddon; Finn Kjellberg; Georges Michaloud

For plants with temporally separate sexual phases to outcross, population- level flowering asynchrony is necessary, but this can decrease the resource base available for pollinators. We developed a simulation model to examine the consequences of such asynchrony for individual reproductive success and long-term pollinator maintenance with- in monoecious fig populations. In figs, flowering is synchronous within a tree and the specialist pollinators/seed predators can only survive briefly away from trees. Consequently, population-level flowering asynchrony must extend year-round for pollinators to persist locally. In repeated stochastic simulations using phenological traits of one well-studied species (Ficus natalensis), a median of 95 trees was required to produce an asynchronous sequence that could maintain local pollinator populations for 4 yr. However, many trees in those simulated populations were either male-sterile (10%) or both male- and female- sterile (35%), because their sexual phases were not well timed with the opposite phases of other trees. Sterility within a population approached zero at 2-3 times the critical population size. Both the predicted critical population size and frequency of success of the trees within it depended strongly on the duration of reproductive episodes and the intervals between episodes. The level of within-tree reproductive synchrony was also critical: doubling the length of time over which individuals could donate pollen resulted in a 39% decrease in critical population size and a 27% increased likelihood that individuals would achieve at least some reproductive success. These results point to the need for precise phenological data for estimating plant fitness and population structure both in models and in the field.


Proceedings of the Royal Society of London B: Biological Sciences | 2001

Pollination mode in fig wasps: the predictive power of correlated traits

Finn Kjellberg; Emmanuelle Jousselin; Judith L. Bronstein; Aviva Patel; Jun Yokoyama; Jean-Yves Rasplus

The over 700 species of Ficus are thought to have co–speciated with their obligate pollinators (family Agaonidae). Some of these wasp species pollinate figs actively, while others are passive pollinators. Based on direct observations of mode of pollination in 88 species, we show that mode of pollination can confidently be predicted from fig traits only (anther–to–ovule ratio) or from wasp traits only (presence of coxal combs). The presence of pollen pockets is not a predictor of mode of pollination. Data, direct and indirect, on 142 species, demonstrate numerous cases of the loss of active pollination and suggest one or few origins of active pollination. Hence, active pollination, an impressive example of the sophisticated traits that may result from mutualistic coevolution, depends on selective forces that can be overcome in some species, allowing reversions. Despite frequent loss, active pollination remains the predominant mode of pollination in Ficus.


Oecologia | 2003

Why do fig wasps actively pollinate monoecious figs

Emmanuelle Jousselin; Martine Hossaert-McKey; Edward Allen Herre; Finn Kjellberg

Active pollination, although rare, has been documented in a few pollination mutualisms. Such behaviour can only evolve if it benefits the pollinator in some way. The wasps that pollinate Ficus inflorescences can be active or passive pollinators. They lay their eggs in fig flowers, so that a proportion of flowers will host a wasp larva instead of a seed. We show in an actively pollinated monoecious fig that lack of pollination does not induce fig abortion or affect wasp offspring size but results in smaller numbers of offspring. Hence, conversely to other active pollination systems, seed formation is not obligatory to sustain developing pollinator larvae; however there is a direct fitness cost to active pollinators not to pollinate. We then compared the locations of eggs and fertilised flowers of three actively pollinated Ficus species and one passively pollinated species. We found that more flowers containing wasp eggs were fertilised in the actively pollinated species relative to those of the passively pollinated one. These results along with comparison with similar studies on dioecious figs, support the hypothesis that active pollination has evolved in fig wasps to ensure that more flowers containing wasp eggs are fertilised as this may increase the chances of successful gall development. The stigmatic platform characterising actively pollinated figs is probably an adaptation to increase pollen dispersion within the fig.


Cladistics | 2009

Laying the foundations for a new classification of Agaonidae (Hymenoptera: Chalcidoidea), a multilocus phylogenetic approach

Astrid Cruaud; Roula Jabbour-Zahab; Gwenaëlle Genson; Corinne Cruaud; Arnaud Couloux; Finn Kjellberg; Simon van Noort; Jean-Yves Rasplus

A phylogeny of the Agaonidae (Chalcidoidea) in their restricted sense, pollinators of Ficus species (Moraceae), is estimated using 4182 nucleotides from six genes, obtained from 101 species representing 19 of the 20 recognized genera, and four outgroups. Data analysed by parsimony and Bayesian inference methods demonstrate that Agaonidae are monophyletic and that the previous classification is not supported. Agaonidae are partitioned into four groups: (i) Tetrapus, (ii) Ceratosolen + Kradibia, (iii) some Blastophaga + Wiebesia species, and (iv) all genera associated with monoecious figs and a few Blastophaga and Wiebesia. The latter group is subdivided into subgroups: (i) Pleistodontes, (ii) Blastophaga psenes and neocaledonian Dolichoris, (iii) some Blastophaga and Wiebesia species, and (iv) Platyscapa, all afrotropical genera and all genera associated with section Conosycea. Eleven genera were recovered as monophyletic, six were para‐ or polyphyletic, and two cannot be tested with our data set. Based on our phylogeny we propose a new classification for the Agaonidae. Two new subfamilies are proposed: Tetrapusiinae for the genus Tetrapus, and Kradibiinae for Ceratosolen + Kradibia. Liporrhopalum is synonymized with Kradibia and the subgenus Valisia of Blastophaga is elevated to generic rank. These changes resulted in 36 new combinations. Finally, we discuss the hypothesis of co‐speciation between the pollinators and their host species by comparing the two phylogenies.


Journal of Evolutionary Biology | 1995

Pollinators entering female dioecious figs: why commit suicide?

Aviva Patel; Marie-Charlotte Anstett; Martine Hossaert-McKey; Finn Kjellberg

In the dioecious fig/pollinator mutualism, the female wasps that pollinate figs on female trees die without reproducing, whereas wasps that pollinate figs on male trees produce offspring. Selection should strongly favour wasps that avoid female figs and enter only male figs. Consequently, fig trees would not be pollinated and fig seed production would ultimately cease, leading to extinction of both wasp and fig. We experimentally presented pollinators in the wild (southern India) with a choice between male and female figs of a dioecious fig species, Ficus hispida L. Our results show that wasps do not systematically discriminate between sexes of F. hispida. We propose four hypotheses to explain why wasp choice has not evolved, and how a mutualism is thus maintained in which all wasps that pollinate female figs have zero fitness.


Journal of Evolutionary Biology | 1991

Cytoplasmic incompatibilities in the mosquito Culex pipiens: How to explain a cytotype polymorphism?*

François Rousset; Michel Raymond; Finn Kjellberg

Although cytoplasmic incompatibilities have been used as a means of eradicating the mosquito Culex pipiens, the population dynamics of these sterilities in relation to the coexistence of multiple incompatible cytotypes in a single area has not been investigated, except in the case of two unidirectionally incompatible cytotypes. An analytical model of the evolution of n cytotypes in an infinite panmictic population has been developed in order to investigate polymorphic equilibrium. A necessary criterion for the stability of such an equilibrium is established; it is shown that a stable polymorphism cannot exist between incompatible cytotypes. This result is discussed in the light of population dynamics and genetics of Culex pipiens, and of our present knowledge on incompatibilities. The consequences of a geographic structuring and of homogamy are considered. A careful reconsideration of previous experimental results disclosed probable nuclear effects and a serious experimental weakness: with the common procedure of backcrossing hybrid females to males of constant genotype it is not possible to rule out probable nuclear effects with paternal expression. It is concluded that incompatibilities in Culex pipiens may have a nuclear‐cytoplasmic determinism.

Collaboration


Dive into the Finn Kjellberg's collaboration.

Top Co-Authors

Avatar

Martine Hossaert-McKey

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Yves Rasplus

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astrid Cruaud

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Anthony Bain

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan-Qiong Peng

Xishuangbanna Tropical Botanical Garden

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bouchaib Khadari

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge