Fiona C. Robertson
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fiona C. Robertson.
Science | 2007
Antony N. Dodd; Michael J. Gardner; Carlos T. Hotta; Katharine E. Hubbard; Neil Dalchau; John Love; Jean-Maurice Assie; Fiona C. Robertson; Mia Kyed Jakobsen; Jorge Goncalves; Dale Sanders; Alex A. R. Webb
Transcriptional feedback loops are a feature of circadian clocks in both animals and plants. We show that the plant circadian clock also incorporates the cytosolic signaling molecule cyclic adenosine diphosphate ribose (cADPR). cADPR modulates the circadian oscillators transcriptional feedback loops and drives circadian oscillations of Ca2+ release. The effects of antagonists of cADPR signaling, manipulation of cADPR synthesis, and mathematical simulation of the interaction of cADPR with the circadian clock indicate that cADPR forms a feedback loop within the plant circadian clock.
Nature | 2013
Michael J. Haydon; Olga Mielczarek; Fiona C. Robertson; Katherine E Hubbard; Alexander Arundel Webb
Circadian clocks provide a competitive advantage in an environment that is heavily influenced by the rotation of the Earth, by driving daily rhythms in behaviour, physiology and metabolism in bacteria, fungi, plants and animals. Circadian clocks comprise transcription–translation feedback loops, which are entrained by environmental signals such as light and temperature to adjust the phase of rhythms to match the local environment. The production of sugars by photosynthesis is a key metabolic output of the circadian clock in plants. Here we show that these rhythmic, endogenous sugar signals can entrain circadian rhythms in Arabidopsis thaliana by regulating the gene expression of circadian clock components early in the photoperiod, thus defining a ‘metabolic dawn’. By inhibiting photosynthesis, we demonstrate that endogenous oscillations in sugar levels provide metabolic feedback to the circadian oscillator through the morning-expressed gene PSEUDO-RESPONSE REGULATOR 7 (PRR7), and we identify that prr7 mutants are insensitive to the effects of sucrose on the circadian period. Thus, photosynthesis has a marked effect on the entrainment and maintenance of robust circadian rhythms in A. thaliana, demonstrating that metabolism has a crucial role in regulation of the circadian clock.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Neil Dalchau; Seong Jin Baek; Helen M. Briggs; Fiona C. Robertson; Antony N. Dodd; Michael J. Gardner; Matthew A. Stancombe; Michael J. Haydon; Guy-Bart Stan; Jorge Goncalves; Alex Ar Webb
Circadian clocks are 24-h timing devices that phase cellular responses; coordinate growth, physiology, and metabolism; and anticipate the day–night cycle. Here we report sensitivity of the Arabidopsis thaliana circadian oscillator to sucrose, providing evidence that plant metabolism can regulate circadian function. We found that the Arabidopsis circadian system is particularly sensitive to sucrose in the dark. These data suggest that there is a feedback between the molecular components that comprise the circadian oscillator and plant metabolism, with the circadian clock both regulating and being regulated by metabolism. We used also simulations within a three-loop mathematical model of the Arabidopsis circadian oscillator to identify components of the circadian clock sensitive to sucrose. The mathematical studies identified GIGANTEA (GI) as being associated with sucrose sensing. Experimental validation of this prediction demonstrated that GI is required for the full response of the circadian clock to sucrose. We demonstrate that GI acts as part of the sucrose-signaling network and propose this role permits metabolic input into circadian timing in Arabidopsis.
Plant Molecular Biology | 2009
Fiona C. Robertson; Alastair W. Skeffington; Michael J. Gardner; Alex A. R. Webb
Growth and development of plants is controlled by external and internal signals. Key internal signals are those generated by hormones and the circadian clock. We highlight interactions between the circadian clock and hormonal signalling networks in regulating the physiology and growth of plants. Microarray analysis has shown that a significant proportion of transcripts involved in hormonal metabolism, catabolism, perception and signalling are also regulated by the circadian clock. In particular, there are interactions between the clock and abscisic acid, auxin, cytokinin and ethylene signalling. We discuss the role of circadian modulation (‘gating’) of hormonal signals in preventing temporally inappropriate responses. A consideration of the daily changes in physiology provides evidence that circadian gating of hormonal signalling couples the rhythmic regulation of carbon and water utilisation to rhythmic patterns of growth.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Neil Dalchau; Katharine E. Hubbard; Fiona C. Robertson; Carlos T. Hotta; Helen M. Briggs; Guy-Bart Stan; Jorge Goncalves; Alex Ar Webb
Circadian oscillators provide rhythmic temporal cues for a range of biological processes in plants and animals, enabling anticipation of the day/night cycle and enhancing fitness-associated traits. We have used engineering models to understand the control principles of a plant’s response to seasonal variation. We show that the seasonal changes in the timing of circadian outputs require light regulation via feed-forward loops, combining rapid light-signaling pathways with entrained circadian oscillators. Linear time-invariant models of circadian rhythms were computed for 3,503 circadian-regulated genes and for the concentration of cytosolic-free calcium to quantify the magnitude and timing of regulation by circadian oscillators and light-signaling pathways. Bioinformatic and experimental analysis show that rapid light-induced regulation of circadian outputs is associated with seasonal rephasing of the output rhythm. We identify that external coincidence is required for rephasing of multiple output rhythms, and is therefore important in general phase control in addition to specific photoperiod-dependent processes such as flowering and hypocotyl elongation. Our findings uncover a fundamental design principle of circadian regulation, and identify the importance of rapid light-signaling pathways in temporal control.
Nature Communications | 2015
Ute Voß; Michael Wilson; Kim Kenobi; Peter D. Gould; Fiona C. Robertson; Wendy Ann Peer; Mikaël Lucas; Kamal Swarup; Ilda Casimiro; Tara J. Holman; Darren M. Wells; Benjamin Péret; Tatsuaki Goh; Hidehiro Fukaki; T. Charlie Hodgman; Laurent Laplaze; Karen J. Halliday; Karin Ljung; Angus S. Murphy; Anthony Hall; Alex A. R. Webb; Malcolm J. Bennett
The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence. In the model plant, Arabidopsis thaliana, LRs originate from a group of stem cells deep within the root, necessitating that new organs emerge through overlying root tissues. We report that the circadian clock is rephased during LR development. Metabolite and transcript profiling revealed that the circadian clock controls the levels of auxin and auxin-related genes including the auxin response repressor IAA14 and auxin oxidase AtDAO2. Plants lacking or overexpressing core clock components exhibit LR emergence defects. We conclude that the circadian clock acts to gate auxin signalling during LR development to facilitate organ emergence.
Nature Chemical Biology | 2009
Fiona C. Robertson; Alex A. R. Webb
A high-throughput one-hybrid screen identifies a regulator of the Arabidopsis thaliana circadian gene CIRCADIAN CLOCK ASSOCIATED1 (CCA1). CCA1 HIKING EXPEDITION (CHE) represses CCA1 and physically interacts with TIMING OF CAB1 (TOC1) to link TOC1 with CCA1 in the clock.
Archive | 2011
Alex A. R. Webb; Fiona C. Robertson
The stomatal guard cell regulates gas exchange between the plant and the environment. The movements of the stomata are regulated by a myriad of signals. The signalling pathways regulating stomatal movements have been intensely investigated due to their importance in plant responses to environmental stresses and because transpiration from the stomatal pore is the major route for water flux from the soil to the atmosphere, having consequence for climate models. The ubiquitous second messenger, calcium, is an important regulator of stomatal movements. The role of calcium as a second messenger in abscisic acid-induced stomatal closure is described. The importance of repetitive oscillations in the concentration of cytosolic free Ca2+ is discussed. The use of network reconstruction tools and systems approaches to understanding the relationship between calcium signalling and the recently discovered kinase/phosphatase-based ABA signalling cascade is considered.
Nature plants | 2018
María Carmen Martí Ruiz; Katharine E. Hubbard; Michael J. Gardner; Hyun Ju Jung; Sylvain Aubry; Carlos T. Hotta; Nur Izzati Mohd-Noh; Fiona C. Robertson; Timothy J. Hearn; Yu-Chang Tsai; Antony N. Dodd; Matthew A. Hannah; Isabelle A. Carré; Julia M. Davies; Janet Braam; Alex A. R. Webb
In the last decade, the view of circadian oscillators has expanded from transcriptional feedback to incorporate post-transcriptional, post-translational, metabolic processes and ionic signalling. In plants and animals, there are circadian oscillations in the concentration of cytosolic free Ca2+ ([Ca2+]cyt), though their purpose has not been fully characterized. We investigated whether circadian oscillations of [Ca2+]cyt regulate the circadian oscillator of Arabidopsis thaliana. We report that in Arabidopsis, [Ca2+]cyt circadian oscillations can regulate circadian clock function through the Ca2+-dependent action of CALMODULIN-LIKE24 (CML24). Genetic analyses demonstrate a linkage between CML24 and the circadian oscillator, through pathways involving the circadian oscillator gene TIMING OF CAB2 EXPRESSION1 (TOC1).The circadian clock involves daily variations in transcription of a set of core genes. Here, the authors show that oscillations in free calcium concentration, read by calmodulin-like proteins, regulate the clock and are part of this complex mechanism.
Molecular BioSystems | 2009
Katharine E. Hubbard; Fiona C. Robertson; Neil Dalchau; Alex A. R. Webb