Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fiona Houghton is active.

Publication


Featured researches published by Fiona Houghton.


Biochemical Journal | 2001

A large family of endosome-localized proteins related to sorting nexin 1

Rohan D. Teasdale; David Loci; Fiona Houghton; Lars Karlsson; Paul A. Gleeson

Sorting nexin 1 (SNX1), a peripheral membrane protein, has previously been shown to regulate the cell-surface expression of the human epidermal growth factor receptor [Kurten, Cadena and Gill (1996) Science 272, 1008-1010]. Searches of human expressed sequence tag databases with SNX1 revealed eleven related human cDNA sequences, termed SNX2 to SNX12, eight of them novel. Analysis of SNX1-related sequences in the Saccharomyces cerevisiae genome clearly shows a greatly expanded SNX family in humans in comparison with yeast. On the basis of the predicted protein sequences, all members of this family of hydrophilic molecules contain a conserved 70-110-residue Phox homology (PX) domain, referred to as the SNX-PX domain. Within the SNX family, subgroups were identified on the basis of the sequence similarities of the SNX-PX domain and the overall domain structure of each protein. The members of one subgroup, which includes human SNX1, SNX2, SNX4, SNX5 and SNX6 and the yeast Vps5p and YJL036W, all contain coiled-coil regions within their large C-terminal domains and are found distributed in both membrane and cytosolic fractions, typical of hydrophilic peripheral membrane proteins. Localization of the human SNX1 subgroup members in HeLa cells transfected with the full-length cDNA species revealed a similar intracellular distribution that in all cases overlapped substantially with the early endosome marker, early endosome autoantigen 1. The intracellular localization of deletion mutants and fusions with green fluorescent protein showed that the C-terminal regions of SNX1 and SNX5 are responsible for their endosomal localization. On the basis of these results, the functions of these SNX molecules are likely to be unique to endosomes, mediated in part by interactions with SNX-specific C-terminal sequences and membrane-associated determinants.


Traffic | 2005

E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by Golgin-97

John G. Lock; Luke A. Hammond; Fiona Houghton; Paul A. Gleeson; Jennifer L. Stow

E‐cadherin is a cell–cell adhesion protein that is trafficked and delivered to the basolateral cell surface. Membrane‐bound carriers for the post‐Golgi exocytosis of E‐cadherin have not been characterized. Green fluorescent protein (GFP)‐tagged E‐cadherin (Ecad‐GFP) is transported from the trans‐Golgi network (TGN) to the recycling endosome on its way to the cell surface in tubulovesicular carriers that resemble TGN tubules labeled by members of the golgin family of tethering proteins. Here, we examine the association of golgins with tubular carriers containing E‐cadherin as cargo. Fluorescent GRIP domains from golgin proteins replicate the membrane binding of the full‐length proteins and were coexpressed with Ecad‐GFP. The GRIP domains of p230/golgin‐245 and golgin‐97 had overlapping but nonidentical distributions on the TGN; both domains were on TGN‐derived tubules but only the golgin‐97 GRIP domain coincided with Ecad‐GFP tubules in live cells. When the Arl1‐binding endogenous golgins, p230/golgin‐245 and golgin‐97 were displaced from Golgi membranes by overexpression of the p230 GRIP domain, trafficking of Ecad‐GFP was inhibited. siRNA knockdown of golgin‐97 also inhibited trafficking of Ecad‐GFP. Thus, the GRIP domains of p230/golgin‐245 and golgin‐97 bind discriminately to distinct membrane subdomains of the TGN. Golgin‐97 is identified as a selective and essential component of the tubulovesicular carriers transporting E‐cadherin out of the TGN.


Journal of Cell Science | 2004

Sorting nexin 5 is localized to a subdomain of the early endosomes and is recruited to the plasma membrane following EGF stimulation

Ana Merino-Trigo; Markus C. Kerr; Fiona Houghton; Anna Lindberg; Christina A. Mitchell; Rohan D. Teasdale; Paul A. Gleeson

Sorting nexins are a large family of proteins that contain the phosphoinositide-binding Phox homology (PX) domain. A number of sorting nexins are known to bind to PtdIns(3)P, which mediates their localization to membranes of the endocytic pathway. We show here that sorting nexin 5 (SNX5) can be recruited to two distinct membrane compartments. In non-stimulated cells, the PX domain was independently targeted to endosomal structures and colocalized with full-length SNX5. The membrane binding of the PX domain was inhibited by the PI 3-kinase inhibitor, wortmannin. Although SNX5 colocalized with a fluid-phase marker and was found predominantly within a PtdIns(3)P-rich endosomal domain, very little colocalization was observed between SNX5 and the PtdIns(3)P-binding protein, EEA1. Using liposome-based binding assays, we have shown that the PX domain of SNX5 interacts not only with PtdIns(3)P but also with PtdIns(3,4)P2. In response to EGF stimulation, either the SNX5-PX domain or full-length SNX5 was rapidly recruited to the plasma membrane. The localization of SNX1, which does not bind PtdIns(3,4)P2, was unaffected by EGF signalling. Therefore, SNX5 is localized to a subdomain of the early endosome distinct from EEA1 and, following EGF stimulation and elevation of PtdIns(3,4)P2, is also transiently recruited to the plasma membrane. These results indicate that SNX5 may have functions not only associated with endosomal sorting but also with the phosphoinositide-signalling pathway.


Biochemical Journal | 2001

Steady-state localization of a medial-Golgi glycosyltransferase involves transit through the trans-Golgi network.

Andrew S. Opat; Fiona Houghton; Paul A. Gleeson

The steady-state localization of medial-Golgi enzymes is likely to involve retrograde transport pathways; however, the trafficking of these resident enzymes through the Golgi stack is unclear. To investigate if the medial-Golgi enzyme beta-1,2-N-acetylglucosaminyltransferase I (GlcNAc-TI) is transported to the late Golgi, a modified GlcNAc-TI bearing an N-glycan site on the C-terminus was constructed. The modified GlcNAc-TI was demonstrated to be functionally active in vivo, and was localized to the Golgi stack of transfected cells. In stable Chinese-hamster ovary (CHO) cell clones, the N-glycosylated GlcNAc-TI carried sialylated complex N-glycan chains. Pulse-chase studies showed that the majority of GlcNAc-TI was sialylated within 60 min of synthesis. Treatment of transfected CHO cells with Brefeldin A resulted in the glycosylated GlcNAc-TI bearing endo-beta-N-acetylglucosaminidase H resistant chains; however, the sialylation of glycosylated GlcNAc-TI was dramatically reduced. These data imply that, in CHO cells, newly synthesized GlcNAc-TI is transported rapidly through the Golgi stack to the trans-Golgi network, suggesting that GlcNAc-TI continuously recycles from the late Golgi. Furthermore, this data suggests that retrograde transport pathways play an important role in establishing the asymmetric distribution of GlcNAc-TI within the Golgi stack.


Biochemical Journal | 2005

The trans-Golgi network GRIP-domain proteins form α-helical homodimers

Michael R. Luke; Fiona Houghton; Matthew A. Perugini; Paul A. Gleeson

A recently described family of TGN (trans-Golgi network) proteins, all of which contain a GRIP domain targeting sequence, has been proposed to play a role in membrane transport. On the basis of the high content of heptad repeats, GRIP domain proteins are predicted to contain extensive coiled-coil regions that have the potential to mediate protein-protein interactions. Four mammalian GRIP domain proteins have been identified which are targeted to the TGN through their GRIP domains, namely p230, golgin-97, GCC88 and GCC185. In the present study, we have investigated the ability of the four mammalian GRIP domain proteins to interact. Using a combination of immunoprecipitation experiments of epitope-tagged GRIP domain proteins, cross-linking experiments and yeast two-hybrid interactions, we have established that the GRIP proteins can self-associate to form homodimers exclusively. Two-hybrid analysis indicated that the N- and C-terminal fragments of GCC88 can interact with themselves but not with each other, suggesting that the GRIP domain proteins form parallel coiled-coil dimers. Analysis of purified recombinant golgin-97 by CD spectroscopy indicated a 67% alpha-helical structure, consistent with a high content of coiled-coil sequences. These results support a model for GRIP domain proteins as extended rod-like homodimeric molecules. The formation of homodimers, but not heterodimers, indicates that each of the four mammalian TGN golgins has the potential to function independently.


Experimental Cell Research | 2012

Arl5b is a Golgi-localised small G protein involved in the regulation of retrograde transport

Fiona Houghton; Shayne A. Bellingham; Andrew F. Hill; Dorothée Bourges; Desmond K. Y. Ang; Timothy Gemetzis; Isabelle Gasnereau; Paul A. Gleeson

Regulation of membrane transport is controlled by small G proteins, which include members of the Rab and Arf families. Whereas the role of the classic Arf family members are well characterized, many of the Arf-like proteins (Arls) remain poorly defined. Here we show that Arl5a and Arl5b are localised to the trans-Golgi in mammalian cells, and furthermore have identified a role for Arl5b in the regulation of retrograde membrane transport from endosomes to the trans-Golgi network (TGN). The constitutively active Arl5b (Q70L)-GFP mutant was localised efficiently to the Golgi in HeLa cells whereas the dominant-negative Arl5b (T30N)-GFP mutant was dispersed throughout the cytoplasm and resulted in perturbation of the Golgi apparatus. Stable HeLa cells expressing GFP-tagged Arl5b (Q70L) showed an increased rate of endosome-to-Golgi transport of the membrane cargo TGN38 compared with control HeLa cells. Depletion of Arl5b by RNAi resulted in an alteration in the intracellular distribution of mannose-6-phosphate receptor, and significantly reduced the endosome-to-TGN transport of the membrane cargo TGN38 and of Shiga toxin, but had no affect on the anterograde transport of the cargo E-cadherin. Collectively these results suggest that Arl5b is a TGN-localised small G protein that plays a key role in regulating transport along the endosome-TGN pathway.


Traffic | 2017

Amyloid precursor protein traffics from the Golgi directly to early endosomes in an Arl5b- and AP4-dependent pathway.

Wei Hong Toh; Jing Zhi A. Tan; Khalisah L. Zulkefli; Fiona Houghton; Paul A. Gleeson

The intracellular trafficking and proteolytic processing of the membrane‐bound amyloid precursor protein (APP) are coordinated events leading to the generation of pathogenic amyloid‐beta (Aβ) peptides. The membrane transport of newly synthesized APP from the Golgi to the endolysosomal system is not well defined, yet it is likely to be critical for regulating its processing by β‐secretase (BACE1) and γ‐secretase. Here, we show that the majority of newly synthesized APP is transported from the trans‐Golgi network (TGN) directly to early endosomes and then subsequently to the late endosomes/lysosomes with very little transported to the cell surface. We show that Arl5b, a small G protein localized to the TGN, and AP4 are essential for the post‐Golgi transport of APP to early endosomes. Arl5b is physically associated with AP4 and is required for the recruitment of AP4, but not AP1, to the TGN. Depletion of either Arl5b or AP4 results in the accumulation of APP, but not BACE1, in the Golgi, and an increase in APP processing and Aβ secretion. These findings demonstrate that APP is diverted from BACE1 at the TGN for direct transport to early endosomes and that the TGN represents a site for APP processing with the subsequent secretion of Aβ.


Methods of Molecular Biology | 2015

Application of Flow Cytometry to Analyze Intracellular Location and Trafficking of Cargo in Cell Populations

Wei Hong Toh; Fiona Houghton; Pei Zhi Cheryl Chia; Yasmin M. Ramdzan; Danny M. Hatters; Paul A. Gleeson

Pulse shape analysis (PulSA) is a flow cytometry-based method that involves the measurement of the pulse width and height of a fluorescently labeled molecule simultaneously, enabling a multidimensional analysis of protein localization in a cell at high speed and throughput. We have used the method to detect morphological changes in organelles such as Golgi fragmentation, track protein trafficking from the cell surface, and also discriminate cells with different target protein localizations such as the Golgi, lyso-endosomal network, and the plasma membrane. Here, we describe the basic experimental setup and analytical methods for performing PulSA to examine membrane trafficking processes. We illustrate in particular the application of PulSA for monitoring the trafficking of the membrane-bound enzyme furin and morphological changes to the Golgi caused by Brefeldin A.


Journal of Immunology | 2014

Transient Systemic Inflammation Does Not Alter the Induction of Tolerance to Gastric Autoantigens by Migratory Dendritic Cells

Dorothée Bourges; Ellen M. Ross; Stacey M. Allen; Simon Read; Fiona Houghton; Sammy Bedoui; Louis Boon; Paul A. Gleeson; Ian R. van Driel

It has been proposed that activation of dendritic cells (DCs) presenting self-antigens during inflammation may lead to activation of autoreactive T cells and the development of autoimmunity. To test this hypothesis, we examined the presentation of the autoantigen recognized in autoimmune gastritis, gastric H+/K+ ATPase, which is naturally expressed in the stomach and is constitutively presented in the stomach-draining lymph nodes. Systemic administration to mice of the TLR9 agonist CpG DNA, agonist anti-CD40 Ab, or TLR4 agonist LPS all failed to abrogate the process of peripheral clonal deletion of H+/K+ ATPase–specific CD4 T cells or promote the development of autoimmune gastritis. We demonstrated that migratory DCs from the stomach-draining lymph nodes are the only DC subset capable of constitutively presenting the endogenous gastric H+/K+ ATPase autoantigen in its normal physiological context. Analysis of costimulatory molecules indicated that, relative to resident DCs, migratory DCs displayed a partially activated phenotype in the steady state. Furthermore, migratory DCs were refractory to stimulation by transient exposure to TLR agonists, as they failed to upregulate costimulatory molecules, secrete significant amounts of inflammatory cytokines, or induce differentiation of effector T cells. Together, these data show that transient systemic inflammation failed to break tolerance to the gastric autoantigen, as migratory DCs presenting the gastric autoantigen remain tolerogenic under such conditions, demonstrating the robust nature of peripheral tolerance.


Traffic | 2014

High-throughput quantitation of intracellular trafficking and organelle disruption by flow cytometry.

Pei Zhi Cheryl Chia; Yasmin M. Ramdzan; Fiona Houghton; Danny M. Hatters; Paul A. Gleeson

Current methods for the quantitation of membrane protein trafficking rely heavily on microscopy, which has limited quantitative capacity for analyses of cell populations and is cumbersome to perform. Here we describe a simple flow cytometry‐based method that circumvents these limitations. The method utilizes fluorescent pulse‐width measurements as a highly sensitive indicator to monitor the changes in intracellular distributions of a fluorescently labelled molecule in a cell. Pulse‐width analysis enabled us to discriminate cells with target proteins in different intracellular locations including Golgi, lyso‐endosomal network and the plasma membrane, as well as detecting morphological changes in organelles such as Golgi perturbation. The movement of endogenous and exogenous retrograde cargo was tracked from the plasma membrane‐to‐endosomes‐to‐Golgi, by decreasing pulse‐width values. A block in transport upon RNAi‐mediated ablation of transport machinery was readily quantified, demonstrating the versatility of this technique to identify pathway inhibitors. We also showed that pulse‐width can be exploited to sort and recover cells based on different intracellular staining patterns, e.g. early endosomes and Golgi, opening up novel downstream applications. Overall, the method provides new capabilities for viewing membrane transport in thousands of cells per minute, unbiased analysis of the trafficking of cargo, and the potential for rapid screening of inhibitors of trafficking pathways.

Collaboration


Dive into the Fiona Houghton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Hong Toh

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge