Fiona M. Baumer
Boston Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fiona M. Baumer.
Biological Psychiatry | 2006
Fiona M. Baumer; Meghan Howe; Kim Gallelli; Diana I. Simeonova; Joachim Hallmayer; Kiki D. Chang
BACKGROUND Antidepressant-induced mania (AIM) has been described in bipolar disorder (BD) and has been associated with the short-allele of the serotonin transporter gene (5-HTT). We wished to investigate the frequency of and risk factors for AIM in pediatric patients with or at high risk for BD. METHODS Fifty-two children and adolescents (30 with BD and 22 with subthreshold manic symptoms, 15.1 +/- 3.4 years old), all with a parent with BD, were interviewed with their parents for manic/depressive symptoms occurring before and after past antidepressant treatment. The 47 subjects with serotonin reuptake inhibitor (SSRI) exposure were genotyped for the 5-HTT polymorphism. RESULTS Fifty percent of subjects were AIM+ and 25.5% had new onset of suicidal ideation. The AIM+ and AIM- groups did not differ significantly in relation to allele (p = .36) or genotype (p = .53) frequencies of the 5-HTT polymorphism. The AIM+ subjects were more likely to have more comorbidities (3.2 vs. 2.4; p = .02) and be BD type I (p = .04) than AIM- subjects. CONCLUSIONS Youth with or at high risk for BD may be particularly vulnerable to SSRI AIM and thus should be monitored if given SSRIs. In this preliminary study, we did not find that the 5-HTT polymorphism significantly influenced vulnerability to AIM.
American Journal of Neuroradiology | 2009
M. M. Schneider; Jeffrey I. Berman; Fiona M. Baumer; Hannah C. Glass; S. Jeng; R. J. Jeremy; M. Esch; V. Biran; A. J. Barkovich; Colin Studholme; Duan Xu; Orit A. Glenn
BACKGROUND AND PURPOSE: Previous studies of diffusion-weighted imaging (DWI) in fetuses are limited. Because of the need for normative data for comparison with young fetuses and preterm neonates with suspected brain abnormalities, we studied apparent diffusion coefficient (ADC) values in a population of singleton, nonsedated, healthy fetuses. MATERIALS AND METHODS: DWI was performed in 28 singleton nonsedated fetuses with normal or questionably abnormal results on sonography and normal fetal MR imaging results; 10 fetuses also had a second fetal MR imaging, which included DWI. ADC values in the periatrial white matter (WM), frontal WM, thalamus, basal ganglia, cerebellum, and pons were plotted against gestational age and analyzed with linear regression. We compared mean ADC in different regions using the Tukey Honestly Significant Difference test. We also compared rates of decline in ADC with increasing gestational age across different areas by using the t test with multiple comparisons correction. Neurodevelopmental outcome was assessed. RESULTS: Median gestational age was 24.28 weeks (range, 21–33.43 weeks). Results of all fetal MR imaging examinations were normal, including 1 fetus with a normal variant of a cavum velum interpositum. ADC values were highest in the frontal and periatrial WM and lowest in the thalamus and pons. ADC declined with increasing gestational age in periatrial WM (P = .0003), thalamus (P < .0001), basal ganglia (P = .0035), cerebellum (P < .0001), and pons (P = .024). Frontal WM ADC did not significantly change with gestational age. ADC declined fastest in the cerebellum, followed by the thalamus. CONCLUSIONS: Regional differences in nonsedated fetal ADC values and their evolution with gestational age likely reflect differences in brain maturation and are similar to published data in premature neonates.
Brain Research | 2000
June A. Stein; Vladimir Znamensky; Fiona M. Baumer; Grace C. Rossi; Gavril W. Pasternak; Richard J. Bodnar
The endogenous opioid system has been implicated in the mediation of food intake elicited by such regulatory challenges as glucoprivation induced by 2-deoxy-D-glucose (2DG) or food deprivation in rodents. Administration of the free fatty acid oxidation inhibitor, mercaptoacetate (MA), produces a potent short-term increase in feeding in rats, the mechanisms of which have been dissociated from that elicited by 2DG. The present study evaluated whether MA-induced feeding in rats was mediated by the endogenous opioid system through systemic administration of the general opioid antagonist, naltrexone, through central administration of either general, mu, mu(1), kappa(1) or delta opioid antagonists, and through central administration of antisense oligodeoxynucleotide (AS ODN) probes directed against specific exons of either the mu (MOR-1), kappa (KOR-1), kappa(3) (KOR-3/ORL-1) or delta (DOR-1) opioid receptor clones. MA-induced feeding was significantly and dose-dependently reduced by systemic naltrexone (0.005-5 mg/kg); these ingestive effects were quite selective since neither total, ambulatory nor stereotypic activity was affected by either MA itself or MA paired with naltrexone. MA-induced feeding was significantly reduced by central pretreatment with either naltrexone (0.1-20 microgram) or mu-selective (beta-funaltrexamine, 0.1-20 microgram), mu(1)-selective (naloxonazine, 1-20 microgram), kappa(1)-selective (nor-binaltorphamine, 0.1-20 microgram), or delta-selective (naltrindole, 1-20 microgram) opioid receptor antagonists. MA-induced feeding was significantly reduced by AS ODN probes directed against either exons 1, 2 or 3, but not exon 4 of the MOR-1 clone, exon 3, but not exons 1 or 2 of the KOR-1 clone, exons 1 or 2, but not exon 3 of the KOR-3/ORL-1 clone, and exon 1, but not exons 2 or 3 of the DOR-1 clone. These data are discussed in terms of opioid mediation of ingestive responses related to fat, and in terms of potential central sites of action at which lipoprivic ingestive responses might act.
Molecular genetics and metabolism reports | 2016
Taraka R. Donti; Gerarda Cappuccio; Leroy Hubert; Juanita Neira; Paldeep S. Atwal; Marcus J. Miller; Aaron L. Cardon; V. Reid Sutton; Brenda E. Porter; Fiona M. Baumer; Michael F. Wangler; Qin Sun; Lisa T. Emrick; Sarah H. Elsea
Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive neurometabolic disorder that presents with a broad-spectrum of neurological and physiological symptoms. The ADSL gene produces an enzyme with binary molecular roles in de novo purine synthesis and purine nucleotide recycling. The biochemical phenotype of ADSL deficiency, accumulation of SAICAr and succinyladenosine (S-Ado) in biofluids of affected individuals, serves as the traditional target for diagnosis with targeted quantitative urine purine analysis employed as the predominate method of detection. In this study, we report the diagnosis of ADSL deficiency using an alternative method, untargeted metabolomic profiling, an analytical scheme capable of generating semi-quantitative z-score values for over 1000 unique compounds in a single analysis of a specimen. Using this method to analyze plasma, we diagnosed ADSL deficiency in four patients and confirmed these findings with targeted quantitative biochemical analysis and molecular genetic testing. ADSL deficiency is part of a large a group of neurometabolic disorders, with a wide range of severity and sharing a broad differential diagnosis. This phenotypic similarity among these many inborn errors of metabolism (IEMs) has classically stood as a hurdle in their initial diagnosis and subsequent treatment. The findings presented here demonstrate the clinical utility of metabolomic profiling in the diagnosis of ADSL deficiency and highlights the potential of this technology in the diagnostic evaluation of individuals with neurologic phenotypes.
Journal of Magnetic Resonance Imaging | 2009
Donghyun Kim; Meng Gu; Charles E. Cunningham; Albert Chen; Fiona M. Baumer; Orit A. Glenn; Daniel B. Vigneron; Daniel Mark Spielman; A. J. Barkovich
To develop a 1H magnetic resonance spectroscopic imaging (MRSI) sequence that can be used to image infants/children at 3T and by combining it with diffusion tensor imaging (DTI) tractography, extract relevant metabolic information corresponding to the corticospinal tract (CST).
Cerebral Cortex | 2018
Fiona M. Baumer; Jurriaan M. Peters; Sean Clancy; Anna K. Prohl; Sanjay P. Prabhu; Benoit Scherrer; Floor E. Jansen; Kees P. J. Braun; Mustafa Sahin; Aymeric Stamm; Simon K. Warfield
Abstract Introduction: Neurological manifestations in Tuberous Sclerosis Complex (TSC) are highly variable. Diffusion tensor imaging (DTI) may reflect the neurological disease burden. We analyzed the association of autism spectrum disorder (ASD), intellectual disability (ID) and epilepsy with callosal DTI metrics in subjects with and without TSC. Methods: 186 children underwent 3T MRI DTI: 51 with TSC (19 with concurrent ASD), 46 with non‐syndromic ASD and 89 healthy controls (HC). Subgroups were based on presence of TSC, ASD, ID, and epilepsy. Density‐weighted DTI metrics obtained from tractography of the corpus callosum were fitted using a 2‐parameter growth model. We estimated distributions using bootstrapping and calculated half‐life and asymptote of the fitted curves. Results: TSC was associated with a lower callosal fractional anisotropy (FA) than ASD, and ASD with a lower FA than HC. ID, epilepsy and ASD diagnosis were each associated with lower FA values, demonstrating additive effects. In TSC, the largest change in FA was related to a comorbid diagnosis of ASD. Mean diffusivity (MD) showed an inverse relationship to FA. Some subgroups were too small for reliable data fitting. Conclusions: Using a cross‐disorder approach, this study demonstrates cumulative abnormality of callosal white matter diffusion with increasing neurological comorbidity.
Epilepsy Research | 2018
Fiona M. Baumer; Brenda E. Porter
BACKGROUND Sunflower Syndrome describes reflex seizures - typically eyelid myoclonia with or without absence seizures - triggered when patients wave their hands in front of the sun. While valproate has been recognized as the best treatment for photosensitive epilepsy, many clinicians now initially treat with newer medications; the efficacy of these medications in Sunflower Syndrome has not been investigated. We reviewed all cases of Sunflower Syndrome seen at our institution over 15 years to describe the clinical course, electroencephalogram (EEG), and treatment response in these patients. METHODS Search of the electronic medical record and EEG database, as well as survey of epilepsy providers at our institution, yielded 13 cases of Sunflower Syndrome between 2002 and 2017. We reviewed the records and EEG tracings. RESULTS Patients were mostly young females, with an average age of onset of 5.5 years. Seven had intellectual, attentional or academic problems. Self-induced seizures were predominantly eyelid myoclonia ± absences and 6 subjects also had spontaneous seizures. EEG demonstrated a normal background with 3-4 Hz spike waves ± polyspike waves as well as a photoparoxysmal response. Based on both clinical and EEG response, valproate was the most effective treatment for reducing or eliminating seizures and improving the EEG; 9 patients tried valproate and 66% had significant improvement or resolution of seizures. None of the nine patients on levetiracetam or seven patients on lamotrigine monotherapy achieved seizure control, though three patients had improvement with polypharmacy. CONCLUSIONS Valproate monotherapy continues to be the most effective treatment for Sunflower Syndrome and should be considered early. For patients who cannot tolerate valproate, higher doses of lamotrigine or polypharmacy should be considered. Levetiracetam monotherapy, even at high doses, is unlikely to be effective.
Pediatric Neurology | 2016
Fiona M. Baumer; Jodie Ouahed; Menno Verhave; Michael J. Rivkin
BACKGROUND Infliximab is used in the treatment of inflammatory bowel disease. Previously reported neurological complications include central and peripheral demyelinating disorders and neuropathies occurring months into therapy. PATIENT DESCRIPTION A seven-year-old boy diagnosed with ulcerative colitis and primary sclerosing cholangitis received infliximab. Six hours following his uneventful infusion, he awoke with headache and emesis and rapidly became obtunded. Neurological examination revealed minimally reactive pupils and otherwise absent brainstem reflexes. Cranial computed tomography revealed hypodense lesions in the cerebral hemispheres, cerebellum, and pons accompanied by hemorrhage. Magnetic resonance imaging showed diffusion restriction concerning for ischemia with areas of ring enhancement suggestive of inflammation. Vessel imaging was normal, and cerebrospinal fluid and serum studies showed only an extremely elevated level of d-dimer. Echocardiogram showed depressed ventricular function but neither intracardiac shunt nor thrombus. Within four days he met criteria for brain death. Autopsy was refused. CONCLUSIONS This is the first report of a fulminant, fatal central nervous system process to occur after an initial dose of infliximab. The differential diagnosis includes multifocal arterial strokes and a devastating demyelinating process.
Pediatric Neurology | 2015
Fiona M. Baumer; Junne Kamihara; Mark P. Gorman
BACKGROUND Central nervous system complications of bone marrow transplant are a common occurrence and the differential diagnosis is quite broad, including opportunistic infections, medications toxicities, graft versus host disease, and other autoimmune processes. PATIENT DESCRIPTION We summarize previously reported cases of autoimmune myelitis in post-transplant patients and discuss a 17-year-old boy who presented with seronegative neuromyelitis optica after a bone marrow transplant for acute myeloid leukemia. Our patient had a marked improvement in symptoms after plasmapheresis. CONCLUSION Including our patient, there have been at least eight cases of post-transplant autoimmune myelitis presented in the literature, and at least three of these are suspicious for neuromyelitis optica. Several of these patients had poor outcomes with persistent symptoms after the myelitis. Autoimmune processes such as neuromyelitis optica should be carefully considered in patients after transplant as aggressive treatment like early plasmapheresis may improve outcomes.
Seizure-european Journal of Epilepsy | 2018
Juliet K. Knowles; Jonathan D. Santoro; Brenda E. Porter; Fiona M. Baumer
Primary familial brain calcification (PFBC), otherwise known as Fahrs disease, is a rare autosomal dominant condition with manifestations of movement disorders, neuropsychiatric symptoms, and epilepsy in a minority of PFBC patients. The clinical presentation of epilepsy in PFBC has not been described in detail. We present a paediatric patient with PFBC and refractory focal epilepsy based on seizure semiology and ictal EEG, but with generalized interictal EEG abnormalities. The patient was found to have a SLC20A2 mutation known to be pathogenic in PFBC, as well as a variant of unknown significance in SCN2A. This case demonstrates that the ictal EEG is important for accurately classifying epilepsy in affected subjects with PFBC. Further, epilepsy in PFBC may be a polygenic disorder.