Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fiona Wilkinson is active.

Publication


Featured researches published by Fiona Wilkinson.


Cardiovascular Research | 2009

Calcification is associated with loss of functional calcium-sensing receptor in vascular smooth muscle cells

Masih-Ul Alam; John Paul Kirton; Fiona Wilkinson; Emily Towers; Smeeta Sinha; Mansour Rouhi; Thomas Neill Vizard; Andrew P. Sage; David Martin; Donald T. Ward; Marie Yvonne Alexander; Daniela Riccardi; Ann E. Canfield

AIMS Vascular calcification (VC) is highly correlated with increased morbidity and mortality in advanced chronic kidney disease (CKD) patients. Allosteric modulation of the calcium-sensing receptor (CaR) by calcimimetics inhibits VC in animal models of advanced CKD. Here, we investigated the expression of the CaR in the vasculature and tested the ability of calcimimetics to prevent vascular smooth muscle cell (VSMC) calcification in vitro. METHODS AND RESULTS Immunohistochemical staining demonstrated that CaR protein is present in VSMC in normal, non-calcified human arteries. In contrast, low levels of CaR immunoreactivity were detected in atherosclerotic, calcified arteries. Immunfluorescence and immunoblotting revealed that CaR protein was also expressed by human and bovine VSMC in vitro. Acute stimulation of VSMC with increased Ca2+ stimulated extracellular signal-regulated kinase (ERK1/2) phosphorylation, suggesting that the VSMC CaR is functional. VSMC CaR expression decreased when these cells deposited a mineralized matrix or following 24 h incubation in mineralization medium with increased (i.e. 1.8 or 2.5 mM) Ca2+. Culturing VSMC in mineralization medium containing 1.8 and 2.5 mM Ca2+ or with the membrane-impermeant CaR agonist Gd3+ enhanced mineral deposition compared with that observed in 1.2 mM Ca2+. Over-expression of dominant-negative (R185Q) CaR enhanced, whereas the calcimimetic R-568 attenuated, VSMC mineral deposition. CONCLUSION These results demonstrate that: (i) VSMCs express a functional CaR; (ii) a reduction in CaR expression is associated with increased mineralization in vivo and in vitro; (iii) calcimimetics decrease mineral deposition by VSMC. These data suggest that calcimimetics may inhibit the development of VC in CKD patients.


PLOS ONE | 2010

Genistein Improves Neuropathology and Corrects Behaviour in a Mouse Model of Neurodegenerative Metabolic Disease

Marcelina Malinowska; Fiona Wilkinson; Kia Langford-Smith; Alex Langford-Smith; Jillian R. Brown; Brett E. Crawford; Marie T. Vanier; Grzegorz Grynkiewicz; Rob Wynn; J. Ed Wraith; Grzegorz Węgrzyn; Brian Bigger

Background Neurodegenerative metabolic disorders such as mucopolysaccharidosis IIIB (MPSIIIB or Sanfilippo disease) accumulate undegraded substrates in the brain and are often unresponsive to enzyme replacement treatments due to the impermeability of the blood brain barrier to enzyme. MPSIIIB is characterised by behavioural difficulties, cognitive and later motor decline, with death in the second decade of life. Most of these neurodegenerative lysosomal storage diseases lack effective treatments. We recently described significant reductions of accumulated heparan sulphate substrate in liver of a mouse model of MPSIIIB using the tyrosine kinase inhibitor genistein. Methodology/Principal Findings We report here that high doses of genistein aglycone, given continuously over a 9 month period to MPSIIIB mice, significantly reduce lysosomal storage, heparan sulphate substrate and neuroinflammation in the cerebral cortex and hippocampus, resulting in correction of the behavioural defects observed. Improvements in synaptic vesicle protein expression and secondary storage in the cerebral cortex were also observed. Conclusions/Significance Genistein may prove useful as a substrate reduction agent to delay clinical onset of MPSIIIB and, due to its multimodal action, may provide a treatment adjunct for several other neurodegenerative metabolic diseases.


PLOS ONE | 2012

Neuropathology in Mouse Models of Mucopolysaccharidosis Type I, IIIA and IIIB

Fiona Wilkinson; Rebecca J. Holley; Kia Langford-Smith; Soumya Badrinath; Aiyin Liao; Alex Langford-Smith; Jonathan D. Cooper; Simon A. Jones; J. Ed Wraith; Rob Wynn; Catherine L. R. Merry; Brian Bigger

Mucopolysaccharide diseases (MPS) are caused by deficiency of glycosaminoglycan (GAG) degrading enzymes, leading to GAG accumulation. Neurodegenerative MPS diseases exhibit cognitive decline, behavioural problems and shortened lifespan. We have characterised neuropathological changes in mouse models of MPSI, IIIA and IIIB to provide a better understanding of these events. Wild-type (WT), MPSI, IIIA and IIIB mouse brains were analysed at 4 and 9 months of age. Quantitative immunohistochemistry showed significantly increased lysosomal compartment, GM2 ganglioside storage, neuroinflammation, decreased and mislocalised synaptic vesicle associated membrane protein, (VAMP2), and decreased post-synaptic protein, Homer-1, in layers II/III-VI of the primary motor, somatosensory and parietal cortex. Total heparan sulphate (HS), was significantly elevated, and abnormally N-, 6-O and 2-O sulphated compared to WT, potentially altering HS-dependent cellular functions. Neuroinflammation was confirmed by significantly increased MCP-1, MIP-1α, IL-1α, using cytometric bead arrays. An overall genotype effect was seen in all parameters tested except for synaptophysin staining, neuronal cell number and cortical thickness which were not significantly different from WT. MPSIIIA and IIIB showed significantly more pronounced pathology than MPSI in lysosomal storage, astrocytosis, microgliosis and the percentage of 2-O sulphation of HS. We also observed significant time progression of all genotypes from 4–9 months in lysosomal storage, astrocytosis, microgliosis and synaptic disorganisation but not GM2 gangliosidosis. Individual genotype*time differences were disparate, with significant progression from 4 to 9 months only seen for MPSIIIB with lysosomal storage, MPSI with astrocytocis and MPSIIIA with microgliosis as well as neuronal loss. Transmission electron microscopy of MPS brains revealed dystrophic axons, axonal storage, and extensive lipid and lysosomal storage. These data lend novel insight to MPS neuropathology, suggesting that MPSIIIA and IIIB have more pronounced neuropathology than MPSI, yet all are still progressive, at least in some aspects of neuropathology, from 4–9 months.


Circulation Research | 2006

Dexamethasone Downregulates Calcification-Inhibitor Molecules and Accelerates Osteogenic Differentiation of Vascular Pericytes. Implications for Vascular Calcification

John Paul Kirton; Fiona Wilkinson; Ann E. Canfield; M. Yvonne Alexander

Vascular calcification is present in many pathological conditions and is recognized as a strong predictor of future cardiovascular events. Current evidence suggests that it is a regulated process involving inducing and inhibitory molecules. Glucocorticoids have great clinical importance as antiinflammatory drugs and can act as potent inducers of osteogenic differentiation in vitro. The effect of glucocorticoids on vascular cells in vivo remains obscure. Pericytes are pluripotent cells that can differentiate into osteoblasts, and recent evidence suggests that they could participate in vascular calcification. We hypothesized that the synthetic glucocorticoid dexamethasone would enhance the rate of pericyte differentiation and mineralization in vitro with a concomitant suppression of calcification-inhibitory molecules. Three weeks of dexamethasone treatment induced a 2-fold increase in (1) alkaline phosphatase activity, (2) calcium deposition, and (3) the number of nodules formed in vitro; and a reduction in the expression of matrix Gla protein (MGP), osteopontin (OPN), and vascular calcification-associated factor (VCAF) mRNAs. The glucocorticoid receptor antagonist Org 34116 abolished dexamethasone-accelerated pericyte differentiation, nodule formation, and mineralization. Data obtained using Org 34116, the transcription inhibitor actinomycin D, and the protein synthesis inhibitor cyclohexamide suggest that MGP, OPN, and VCAF mRNA abundance are controlled at different and multiple levels by dexamethasone. This is the first report showing that dexamethasone enhances the osteogenic differentiation of pericytes and downregulates genes associated with inhibition of mineralization. Our study highlights the need for further investigation into the long-term consequences of prolonged glucocorticoid therapy on vascular calcification.


Molecular Therapy | 2012

Hematopoietic Stem Cell and Gene Therapy Corrects Primary Neuropathology and Behavior in Mucopolysaccharidosis IIIA Mice

Alex Langford-Smith; Fiona Wilkinson; Kia Langford-Smith; Rebecca J. Holley; Ana Sergijenko; Steven J. Howe; William R. Bennett; Simon A. Jones; James E. Wraith; Catherine L. R. Merry; Robert Wynn; Brian Bigger

Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo disease) is a neurodegenerative disorder caused by a deficiency in the lysosomal enzyme sulfamidase (SGSH), catabolizing heparan sulfate (HS). Affected children present with severe behavioral abnormalities, sleep disturbances, and progressive neurodegeneration, leading to death in their second decade. MPS I, a similar neurodegenerative disease accumulating HS, is treated successfully with hematopoietic stem cell transplantation (HSCT) but this treatment is ineffectual for MPS IIIA. We compared HSCT in MPS IIIA mice using wild-type donor cells transduced ex vivo with lentiviral vector-expressing SGSH (LV-WT-HSCT) versus wild-type donor cell transplant (WT-HSCT) or lentiviral-SGSH transduced MPS IIIA cells (LV-IIIA-HSCT). LV-WT-HSCT results in 10% of normal brain enzyme activity, near normalization of brain HS and GM2 gangliosides, significant improvements in neuroinflammation and behavioral correction. Both WT-HSCT and LV-IIIA-HSCT mediated improvements in GM2 gangliosides and neuroinflammation but were less effective at reducing HS or in ameliorating abnormal HS sulfation and had no significant effect on behavior. This suggests that HS may have a more significant role in neuropathology than neuroinflammation or GM2 gangliosides. These data provide compelling evidence for the efficacy of gene therapy in conjunction with WT-HSCT for neurological correction of MPS IIIA where conventional transplant is ineffectual.Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo disease) is a neurodegenerative disorder caused by a deficiency in the lysosomal enzyme sulfamidase (SGSH), catabolizing heparan sulfate (HS). Affected children present with severe behavioral abnormalities, sleep disturbances, and progressive neurodegeneration, leading to death in their second decade. MPS I, a similar neurodegenerative disease accumulating HS, is treated successfully with hematopoietic stem cell transplantation (HSCT) but this treatment is ineffectual for MPS IIIA. We compared HSCT in MPS IIIA mice using wild-type donor cells transduced ex vivo with lentiviral vector-expressing SGSH (LV-WT-HSCT) versus wild-type donor cell transplant (WT-HSCT) or lentiviral-SGSH transduced MPS IIIA cells (LV-IIIA-HSCT). LV-WT-HSCT results in 10% of normal brain enzyme activity, near normalization of brain HS and GM2 gangliosides, significant improvements in neuroinflammation and behavioral correction. Both WT-HSCT and LV-IIIA-HSCT mediated improvements in GM2 gangliosides and neuroinflammation but were less effective at reducing HS or in ameliorating abnormal HS sulfation and had no significant effect on behavior. This suggests that HS may have a more significant role in neuropathology than neuroinflammation or GM2 gangliosides. These data provide compelling evidence for the efficacy of gene therapy in conjunction with WT-HSCT for neurological correction of MPS IIIA where conventional transplant is ineffectual.


Atherosclerosis | 2014

Endothelial microparticles as conveyors of information in atherosclerotic disease

A. Schiro; Fiona Wilkinson; Ria Weston; Jv Smyth; Ferdinand Serracino-Inglott; M Y Alexander

Endothelial microparticles (EMPs) are complex submicron membrane-shed vesicles released into the circulation following endothelium cell activation or apoptosis. They are classified as either physiological or pathological, with anticoagulant or pro-inflammatory effects respectively. Endothelial dysfunction caused by inflammation is a key initiating event in atherosclerotic plaque formation. Athero-emboli, resulting from ruptured carotid plaques are a major cause of stroke. Current clinical techniques for arterial assessment, angiography and carotid ultrasound, give accurate information about stenosis but limited evidence on plaque composition, inflammation or vulnerability; as a result, patients with asymptomatic, or fragile carotid lesions, may not be identified and treated effectively. There is a need to discover novel biomarkers and develop more efficient diagnostic approaches in order to stratify patients at most risk of stroke, who would benefit from interventional surgery. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. In this review, we will present the evidence to support this hypothesis and propose a novel concept for the development of a diagnostic device that could be implemented in the clinic.


The Journal of Pathology | 2007

Hepatocyte growth factor and c‐Met expression in pericytes: implications for atherosclerotic plaque development

Yifen Liu; Fiona Wilkinson; Jp Kirton; Maria Jeziorska; Hisashi Iizasa; Yoshimichi Sai; Emi Nakashima; Anthony M. Heagerty; A E Canfield; M Y Alexander

Intraplaque neovascularization contributes to the progression of atherosclerosis. Our aim is to understand the mobilization of cells and factors involved in this process. We investigated the localization of hepatocyte growth factor (HGF) and its receptor, c‐Met, in human atherosclerotic plaques, together with the effects of HGF on pericyte migration in vitro. Atherosclerotic femoral arterial segments were collected and analysed from 13 subjects who were undergoing lower limb amputation. Pericytes were identified in human lesions using a 3G5 antibody. Immunohistochemical analysis localized HGF mainly around microvessels, in association with some, but not all, CD31‐positive endothelial cells. c‐Met expression was mainly associated with smooth muscle cells and pericytes, around some, but not all, microvessels within the atherosclerotic lesions; no detection was apparent in normal internal mammary arteries. Using RT–PCR, we demonstrated expression of HGF and c‐Met in a rat pericyte cell‐line, TR–PCT1, and in primary pericytes. HGF treatment of TR‐PCT1 cells induced their migration, but not their proliferation, in a dose‐dependent manner (10–100 ng/ml, p < 0.01), an effect mediated by activation of the serine/threonine kinase Akt, shown by western blot analysis. Treating the cells with the PI3K inhibitors Wortmannin (0.1 µM) or LY294002 (10 µM) abolished these effects. This work demonstrates the expression of c‐Met and HGF in human atherosclerotic arteries, in association with SM‐actin‐positive cells and CD‐31‐positive cells, respectively. HGF induces pericyte migration via PI3‐kinase and Akt activation in vitro. HGF and c‐Met may be involved in neovascularization during plaque development, and may recruit pericytes to neovessels. Since pericytes are thought to mechanically stabilize new blood vessels, these factors may function to protect against haemorrhage. Copyright


Molecular Therapy | 2013

Busulfan conditioning enhances engraftment of hematopoietic donor-derived cells in the brain compared with irradiation.

Fiona Wilkinson; Ana Sergijenko; Kia Langford-Smith; Marcela Malinowska; Rob Wynn; Brian Bigger

Hematopoietic stem cell gene therapy for neurological disorders relies on transmigration of donor-derived monocytes to the brain, where they can engraft as microglia and deliver therapeutic proteins. Many mouse studies use whole-body irradiation to investigate brain transmigration pathways, but chemotherapy is generally used clinically. The current evidence for transmigration to the brain after chemotherapy is conflicting. We compared hematopoietic donor cell brain engraftment after bone marrow (BM) transplants in busulfan- or irradiation-conditioned mice. Significantly more donor-derived microglial cells engrafted posttransplant in busulfan-conditioned brain compared with the irradiated, in both the short and long term. Although total Iba-1(+) microglial content was increased in irradiated brain in the short term, it was similar between groups over long-term engraftment. MCP-1, a key regulator of monocyte transmigration, showed long-term elevation in busulfan-conditioned brain, whereas irradiated brains showed long-term elevation of the proinflammatory chemokine interleukin 1α (IL-1α), with increased in situ proliferation of resident microglia, and significant increases in the relative number of amoeboid activated microglia in the brain. This has implications for the choice of conditioning regimen to promote hematopoietic cell brain engraftment and the relevance of irradiation in mouse models of transplantation.


Molecular Therapy | 2013

Myeloid/Microglial Driven Autologous Hematopoietic Stem Cell Gene Therapy Corrects a Neuronopathic Lysosomal Disease

Ana Sergijenko; Alex Langford-Smith; Ai Y Liao; Claire E. Pickford; John McDermott; Gabriel Nowinski; Kia Langford-Smith; Catherine L. R. Merry; Simon A. Jones; J. Edmond Wraith; Robert Wynn; Fiona Wilkinson; Brian Bigger

Mucopolysaccharidosis type IIIA (MPSIIIA) is a lysosomal storage disorder caused by mutations in N-sulfoglucosamine sulfohydrolase (SGSH), resulting in heparan sulfate (HS) accumulation and progressive neurodegeneration. There are no treatments. We previously demonstrated improved neuropathology in MPSIIIA mice using lentiviral vectors (LVs) overexpressing SGSH in wild-type (WT) hematopoietic stem cell (HSC) transplants (HSCTs), achieved via donor monocyte/microglial engraftment in the brain. However, neurological disease was not corrected using LVs in autologous MPSIIIA HSCTs. To improve brain expression via monocyte/microglial specificity, LVs expressing enhanced green fluorescent protein (eGFP) under ubiquitous phosphoglycerate kinase (PGK) or myeloid-specific promoters were compared in transplanted HSCs. LV-CD11b-GFP gave significantly higher monocyte/B-cell eGFP expression than LV-PGK-GFP or LV-CD18-GFP after 6 months. Subsequently, autologous MPSIIIA HSCs were transduced with either LV-PGK-coSGSH or LV-CD11b-coSGSH vectors expressing codon-optimized SGSH and transplanted into MPSIIIA mice. Eight months after HSCT, LV-PGK-coSGSH vectors produced bone marrow SGSH (576% normal activity) similar to LV-CD11b-coSGSH (473%), but LV-CD11b-coSGSH had significantly higher brain expression (11 versus 7%), demonstrating improved brain specificity. LV-CD11b-coSGSH normalized MPSIIIA behavior, brain HS, GM2 ganglioside, and neuroinflammation to WT levels, whereas LV-PGK-coSGSH partly corrected neuropathology but not behavior. We demonstrate compelling evidence of neurological disease correction using autologous myeloid driven lentiviral-HSC gene therapy in MPSIIIA mice.


Brain | 2015

Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model.

Carla Martins; Helena Hůlková; Larbi Dridi; Virginie Dormoy-Raclet; Lubov Grigoryeva; Yoo Choi; Alex Langford-Smith; Fiona Wilkinson; Kazuhiro Ohmi; Graziella DiCristo; Edith Hamel; Jérôme Ausseil; David Cheillan; Alain Moreau; Eva Svobodová; Zuzana Hájková; Markéta Tesařová; Hana Hansikova; Brian Bigger; Martin Hrebicek; Alexey V. Pshezhetsky

Severe progressive neurological paediatric disease mucopolysaccharidosis III type C is caused by mutations in the HGSNAT gene leading to deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase involved in the lysosomal catabolism of heparan sulphate. To understand the pathophysiology of the disease we generated a mouse model of mucopolysaccharidosis III type C by germline inactivation of the Hgsnat gene. At 6-8 months mice showed hyperactivity, and reduced anxiety. Cognitive memory decline was detected at 10 months and at 12-13 months mice showed signs of unbalanced hesitant walk and urinary retention. Lysosomal accumulation of heparan sulphate was observed in hepatocytes, splenic sinus endothelium, cerebral microglia, liver Kupffer cells, fibroblasts and pericytes. Starting from 5 months, brain neurons showed enlarged, structurally abnormal mitochondria, impaired mitochondrial energy metabolism, and storage of densely packed autofluorescent material, gangliosides, lysozyme, phosphorylated tau, and amyloid-β. Taken together, our data demonstrate for the first time that deficiency of acetyl-CoA: α-glucosaminide N-acetyltransferase causes lysosomal accumulation of heparan sulphate in microglial cells followed by their activation and cytokine release. They also show mitochondrial dysfunction in the neurons and neuronal loss explaining why mucopolysaccharidosis III type C manifests primarily as a neurodegenerative disease.

Collaboration


Dive into the Fiona Wilkinson's collaboration.

Top Co-Authors

Avatar

Brian Bigger

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Y Alexander

Manchester Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob Wynn

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

M. Yvonne Alexander

Manchester Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Ria Weston

Manchester Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Yvonne Alexander

Manchester Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon A. Jones

Central Manchester University Hospitals NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge