Fiorella Speziani
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fiorella Speziani.
Annals of Neurology | 2011
Gladys Montenegro; Eric Powell; Jia Huang; Fiorella Speziani; Yvonne J. K. Edwards; Gary W. Beecham; William Hulme; Carly E. Siskind; Jeffery M. Vance; Michael E. Shy; Stephan Züchner
Charcot‐Marie‐Tooth (CMT) disease comprises a large number of genetically distinct forms of inherited peripheral neuropathies. The relative uniform phenotypes in many patients with CMT make it difficult to decide which of the over 35 known CMT genes are affected in a given patient. Genetic testing decision trees are therefore broadly based on a small number of major subtypes (eg, CMT1, CMT2) and the observed mutation frequency for CMT genes. Since conventional genetic testing is expensive many rare genes are not being tested for at all.
American Journal of Human Genetics | 2013
Emily C. Oates; Alexander M. Rossor; Majid Hafezparast; Michael Gonzalez; Fiorella Speziani; Daniel G. MacArthur; Monkol Lek; Ellen Cottenie; M. Scoto; A. Reghan Foley; Henry Houlden; Linda Greensmith; Michaela Auer-Grumbach; Thomas R. Pieber; Tim M. Strom; Rebecca Schüle; David N. Herrmann; Janet Sowden; Gyula Acsadi; Manoj P. Menezes; Nigel F. Clarke; Stephan Züchner; Francesco Muntoni; Kathryn N. North; Mary M. Reilly
Dominant congenital spinal muscular atrophy (DCSMA) is a disorder of developing anterior horn cells and shows lower-limb predominance and clinical overlap with hereditary spastic paraplegia (HSP), a lower-limb-predominant disorder of corticospinal motor neurons. We have identified four mutations in bicaudal D homolog 2 (Drosophila) (BICD2) in six kindreds affected by DCSMA, DCSMA with upper motor neuron features, or HSP. BICD2 encodes BICD2, a key adaptor protein that interacts with the dynein-dynactin motor complex, which facilitates trafficking of cellular cargos that are critical to motor neuron development and maintenance. We demonstrate that mutations resulting in amino acid substitutions in two binding regions of BICD2 increase its binding affinity for the cytoplasmic dynein-dynactin complex, which might result in the perturbation of BICD2-dynein-dynactin-mediated trafficking, and impair neurite outgrowth. These findings provide insight into the mechanism underlying both the static and the slowly progressive clinical features and the motor neuron pathology that characterize BICD2-associated diseases, and underscore the importance of the dynein-dynactin transport pathway in the development and survival of both lower and upper motor neurons.
American Journal of Human Genetics | 2013
Amir Boukhris; Rebecca Schüle; José Leal Loureiro; Charles Marques Lourenço; Emeline Mundwiller; Michael Gonzalez; Perrine Charles; Julie Gauthier; Imen Rekik; Rafael F. Acosta Lebrigio; Marion Gaussen; Fiorella Speziani; Andreas Ferbert; Imed Feki; Andrés Caballero-Oteyza; Alexandre Dionne-Laporte; Mohamed Amri; Anne Noreau; Sylvie Forlani; Vítor Tedim Cruz; Fanny Mochel; Paula Coutinho; Patrick A. Dion; Chokri Mhiri; Ludger Schöls; Jean Pouget; Frédéric Darios; Guy A. Rouleau; Wilson Marques; Alexis Brice
Hereditary spastic paraplegias (HSPs) form a heterogeneous group of neurological disorders. A whole-genome linkage mapping effort was made with three HSP-affected families from Spain, Portugal, and Tunisia and it allowed us to reduce the SPG26 locus interval from 34 to 9 Mb. Subsequently, a targeted capture was made to sequence the entire exome of affected individuals from these three families, as well as from two additional autosomal-recessive HSP-affected families of German and Brazilian origins. Five homozygous truncating (n = 3) and missense (n = 2) mutations were identified in B4GALNT1. After this finding, we analyzed the entire coding region of this gene in 65 additional cases, and three mutations were identified in two subjects. All mutated cases presented an early-onset spastic paraplegia, with frequent intellectual disability, cerebellar ataxia, and peripheral neuropathy as well as cortical atrophy and white matter hyperintensities on brain imaging. B4GALNT1 encodes β-1,4-N-acetyl-galactosaminyl transferase 1 (B4GALNT1), involved in ganglioside biosynthesis. These findings confirm the increasing interest of lipid metabolism in HSPs. Interestingly, although the catabolism of gangliosides is implicated in a variety of neurological diseases, SPG26 is only the second human disease involving defects of their biosynthesis.
Journal of Neurology, Neurosurgery, and Psychiatry | 2013
Michael Gonzalez; Heather M. McLaughlin; Henry Houlden; Min Guo; Yo Tsen Liu; Marios Hadjivassilious; Fiorella Speziani; Xiang-Lei Yang; Anthony Antonellis; Mary M. Reilly; Stephan Züchner
Charcot–Marie–Tooth (CMT) disease is a genetically heterogeneous condition with >50 genes now being identified. Thanks to new technological developments, namely, exome sequencing, the ability to identify additional rare genes in CMT has been drastically improved. Here we present data suggesting that MARS is a very rare novel cause of late-onset CMT2. This is supported by strong functional and evolutionary evidence, yet the absence of additional unrelated cases warrant future studies to substantiate this conclusion.
Nature Genetics | 2015
Alexander J. Abrams; Robert B. Hufnagel; Adriana P. Rebelo; Claudia Zanna; Neville Patel; Michael Gonzalez; Ion J. Campeanu; Laurie B. Griffin; Saskia Groenewald; Alleene V. Strickland; Feifei Tao; Fiorella Speziani; Lisa Abreu; Rebecca Schüle; Leonardo Caporali; Chiara La Morgia; Alessandra Maresca; Rocco Liguori; Raffaele Lodi; Zubair M. Ahmed; Kristen L. Sund; Xinjian Wang; Laura A. Krueger; Yanyan Peng; Carlos E. Prada; Cynthia A. Prows; Elizabeth K. Schorry; Anthony Antonellis; Holly H. Zimmerman; Omar A. Abdul-Rahman
Dominant optic atrophy (DOA) and axonal peripheral neuropathy (Charcot-Marie-Tooth type 2, or CMT2) are hereditary neurodegenerative disorders most commonly caused by mutations in the canonical mitochondrial fusion genes OPA1 and MFN2, respectively. In yeast, homologs of OPA1 (Mgm1) and MFN2 (Fzo1) work in concert with Ugo1, for which no human equivalent has been identified thus far. By whole-exome sequencing of patients with optic atrophy and CMT2, we identified four families with recessive mutations in SLC25A46. We demonstrate that SLC25A46, like Ugo1, is a modified carrier protein that has been recruited to the outer mitochondrial membrane and interacts with the inner membrane remodeling protein mitofilin (Fcj1). Loss of function in cultured cells and in zebrafish unexpectedly leads to increased mitochondrial connectivity, while severely affecting the development and maintenance of neurons in the fish. The discovery of SLC25A46 strengthens the genetic overlap between optic atrophy and CMT2 while exemplifying a new class of modified solute transporters linked to mitochondrial dynamics.
Brain | 2014
Michael Gonzalez; Shawna Feely; Fiorella Speziani; Alleene V. Strickland; Matt Danzi; Chelsea Bacon; YouJin Lee; Tsui Fen Chou; Susan H. Blanton; Conrad C. Weihl; Stephan Züchner; Michael E. Shy
Mutations in VCP have been reported to account for a spectrum of phenotypes that include inclusion body myopathy with Pagets disease of the bone and frontotemporal dementia, hereditary spastic paraplegia, and 1-2% of familial amyotrophic lateral sclerosis. We identified a novel VCP mutation (p.Glu185Lys) segregating in an autosomal dominant Charcot-Marie-Tooth disease type 2 family. Functional studies showed that the Glu185Lys variant impaired autophagic function leading to the accumulation of immature autophagosomes. VCP mutations should thus be considered for genetically undefined Charcot-Marie-Tooth disease type 2.
Human Mutation | 2013
Guida Landouré; Peng Peng Zhu; Charles Marques Lourenço; Janel O. Johnson; Camilo Toro; Katherine V. Bricceno; Carlo Rinaldi; Katherine G. Meilleur; Modibo Sangaré; Oumarou Diallo; Tyler Mark Pierson; Hiroyuki Ishiura; Shoji Tsuji; Nichole D. Hein; John K. Fink; Marion Stoll; Garth A. Nicholson; Michael Gonzalez; Fiorella Speziani; Alexandra Durr; Giovanni Stevanin; Leslie G. Biesecker; John Accardi; Dennis M. D. Landis; William A. Gahl; Bryan J. Traynor; Wilson Marques; Stephan Züchner; Craig Blackstone; Kenneth H. Fischbeck
We report here the genetic basis for a form of progressive hereditary spastic paraplegia (SPG43) previously described in two Malian sisters. Exome sequencing revealed a homozygous missense variant (c.187G>C; p.Ala63Pro) in C19orf12, a gene recently implicated in neurodegeneration with brain iron accumulation (NBIA). The same mutation was subsequently also found in a Brazilian family with features of NBIA, and we identified another NBIA patient with a three‐nucleotide deletion (c.197_199del; p.Gly66del). Haplotype analysis revealed that the p.Ala63Pro mutations have a common origin, but MRI scans showed no brain iron deposition in the Malian SPG43 subjects. Heterologous expression of these SPG43 and NBIA variants resulted in similar alterations in the subcellular distribution of C19orf12. The SPG43 and NBIA variants reported here as well as the most common C19orf12 missense mutation reported in NBIA patients are found within a highly conserved, extended hydrophobic domain in C19orf12, underscoring the functional importance of this domain.
European Journal of Human Genetics | 2013
Michael Gonzalez; Sheela Nampoothiri; Cornelia Kornblum; Andrés Caballero Oteyza; Jochen Walter; Ioanna Konidari; William Hulme; Fiorella Speziani; Ludger Schöls; Stephan Züchner; Rebecca Schüle
Hereditary spastic paraplegias (HSP) are a genetically heterogeneous group of disorders characterized by a distal axonopathy of the corticospinal tract motor neurons leading to progressive lower limb spasticity and weakness. Intracellular membrane trafficking, mitochondrial dysfunction and myelin formation are key functions involved in HSP pathogenesis. Only recently defects in metabolism of complex lipids have been implicated in a number of HSP subtypes. Mutations in the 23 known autosomal recessive HSP genes explain less than half of autosomal recessive HSP cases. To identify novel autosomal recessive HSP disease genes, exome sequencing was performed in 79 index cases with autosomal recessive forms of HSP. Resulting variants were filtered and intersected between families to allow identification of new disease genes. We identified two deleterious mutations in the phospholipase DDHD2 gene in two families with complicated HSP. The phenotype is characterized by early onset of spastic paraplegia, mental retardation, short stature and dysgenesis of the corpus callosum. Phospholipase DDHD2 is involved in intracellular membrane trafficking at the golgi/ endoplasmic reticulum interface and has been shown to possess phospholipase A1 activity in vitro. Discovery of DDHD2 mutations in HSP might therefore provide a link between two key pathogenic themes in HSP: membrane trafficking and lipid metabolism.
American Journal of Human Genetics | 2014
Typhaine Esteves; Alexandra Durr; Emeline Mundwiller; José Leal Loureiro; Maxime Boutry; Michael Gonzalez; Julie Gauthier; Khalid H. El-Hachimi; Christel Depienne; Marie Paule Muriel; Rafael F. Acosta Lebrigio; Marion Gaussen; Anne Noreau; Fiorella Speziani; Alexandre Dionne-Laporte; Jean-François Deleuze; Patrick A. Dion; Paula Coutinho; Guy A. Rouleau; Stephan Züchner; Alexis Brice; Giovanni Stevanin; Frédéric Darios
Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous neurological conditions. Their main pathogenic mechanisms are thought to involve alterations in endomembrane trafficking, mitochondrial function, and lipid metabolism. With a combination of whole-genome mapping and exome sequencing, we identified three mutations in REEP2 in two families with HSP: a missense variant (c.107T>A [p.Val36Glu]) that segregated in the heterozygous state in a family with autosomal-dominant inheritance and a missense change (c.215T>A [p.Phe72Tyr]) that segregated in trans with a splice site mutation (c.105+3G>T) in a family with autosomal-recessive transmission. REEP2 belongs to a family of proteins that shape the endoplasmic reticulum, an organelle that was altered in fibroblasts from an affected subject. In vitro, the p.Val36Glu variant in the autosomal-dominant family had a dominant-negative effect; it inhibited the normal binding of wild-type REEP2 to membranes. The missense substitution p.Phe72Tyr, in the recessive family, decreased the affinity of the mutant protein for membranes that, together with the splice site mutation, is expected to cause complete loss of REEP2 function. Our findings illustrate how dominant and recessive inheritance can be explained by the effects and nature of mutations in the same gene. They have also important implications for genetic diagnosis and counseling in clinical practice because of the association of various modes of inheritance to this new clinico-genetic entity.
Journal of Neurology | 2011
Donald S. McCorquodale; Gladys Montenegro; Ainsley Peguero; Nicole Carlson; Fiorella Speziani; Justin Price; Sean Taylor; Michel Melanson; Jeffery M. Vance; Stephan Züchner
Charcot-Marie-Tooth (CMT) disease is among the most common inherited neurological disorders. Mutations in the gene mitofusin 2 (MFN2) cause the axonal subtype CMT2A, which has also been shown to be associated with optic atrophy, clinical signs of first motor neuron involvement, and early onset stroke. Mutations in MFN2 account for up to 20–30% of all axonal CMT type 2 cases. To further investigate the prevalence of MFN2 mutations and to add to the genotypic spectrum, we sequenced all exons of MFN2 in a cohort of 39 CMT2 patients. We identified seven variants, four of which are novel. One previously described change was co-inherited with a PMP22 duplication, which itself causes the demyelinating form CMT1A. Another mutation was a novel in frame deletion, which is a rare occurrence in the genotypic spectrum of MFN2 characterized mainly by missense mutations. Our results confirm a MFN2 mutation rate of ~15–20% in CMT2.