Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fiorenzo Artoni is active.

Publication


Featured researches published by Fiorenzo Artoni.


eLife | 2016

Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans

Calogero Maria Oddo; Stanisa Raspopovic; Fiorenzo Artoni; Alberto Mazzoni; Giacomo Spigler; Francesco Maria Petrini; Federica Giambattistelli; Fabrizio Vecchio; Francesca Miraglia; Loredana Zollo; Giovanni Di Pino; Domenico Camboni; Maria Chiara Carrozza; Eugenio Guglielmelli; Paolo Maria Rossini; Ugo Faraguna; Silvestro Micera

Restoration of touch after hand amputation is a desirable feature of ideal prostheses. Here, we show that texture discrimination can be artificially provided in human subjects by implementing a neuromorphic real-time mechano-neuro-transduction (MNT), which emulates to some extent the firing dynamics of SA1 cutaneous afferents. The MNT process was used to modulate the temporal pattern of electrical spikes delivered to the human median nerve via percutaneous microstimulation in four intact subjects and via implanted intrafascicular stimulation in one transradial amputee. Both approaches allowed the subjects to reliably discriminate spatial coarseness of surfaces as confirmed also by a hybrid neural model of the median nerve. Moreover, MNT-evoked EEG activity showed physiologically plausible responses that were superimposable in time and topography to the ones elicited by a natural mechanical tactile stimulation. These findings can open up novel opportunities for sensory restoration in the next generation of neuro-prosthetic hands. DOI: http://dx.doi.org/10.7554/eLife.09148.001


international conference of the ieee engineering in medicine and biology society | 2012

ErpICASSO: A tool for reliability estimates of independent components in EEG event-related analysis

Fiorenzo Artoni; Angelo Gemignani; Laura Sebastiani; Remo Bedini; Alberto Landi; Danilo Menicucci

Independent component analysis and blind source separation methods are steadily gaining popularity for separating individual brain and non-brain source signals mixed by volume conduction in electroencephalographic data. Despite the advancements on these techniques, determining the number of embedded sources and their reliability are still open issues. In particular to date no method takes into account trial-to-trial variability in order to provide a reliability measure of independent components extracted in Event Related Potentials (ERPs) studies. In this work we present ErpICASSO, a new method which modifies a data-driven approach named ICASSO for the analysis of trials (epochs). In addition to ICASSO the method enables the user to estimate the number of embedded sources, and provides a quality index of each extracted ERP component by combining trial-to-trial bootstrapping and CCA projection. We applied ErpICASSO on ERPs recorded from 14 subjects presented with unpleasant and neutral pictures. We separated potentials putatively related to different systems and identified the four primary ERP independent sources. Standing on the confidence interval estimated by ErpICASSO, we were able to compare the components between neutral and unpleasant conditions. ErpICASSO yielded encouraging results, thus providing the scientific community with a useful tool for ICA signal processing whenever dealing with trials recorded in different conditions.


NeuroImage | 2017

Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking

Fiorenzo Artoni; Chiara Fanciullacci; Federica Bertolucci; Alessandro Panarese; Scott Makeig; Silvestro Micera; Carmelo Chisari

Abstract In lower mammals, locomotion seems to be mainly regulated by subcortical and spinal networks. On the contrary, recent evidence suggests that in humans the motor cortex is also significantly engaged during complex locomotion tasks. However, a detailed understanding of cortical contribution to locomotion is still lacking especially during stereotyped activities. Here, we show that cortical motor areas finely control leg muscle activation during treadmill stereotyped walking. Using a novel technique based on a combination of Reliable Independent Component Analysis, source localization and effective connectivity, and by combining electroencephalographic (EEG) and electromyographic (EMG) recordings in able‐bodied adults we were able to examine for the first time cortical activation patterns and cortico‐muscular connectivity including information flow direction. Results not only provided evidence of cortical activity associated with locomotion, but demonstrated significant causal unidirectional drive from contralateral motor cortex to muscles in the swing leg. These insights overturn the traditional view that human cortex has a limited role in the control of stereotyped locomotion, and suggest useful hypotheses concerning mechanisms underlying gait under other conditions. One sentence summary Motor cortex proactively drives contralateral swing leg muscles during treadmill walking, counter to the traditional view of stereotyped human locomotion. HighlightsCortical contributions to stereotyped locomotion are still not well understood.We studied EEG – EMG effective cortico‐muscular connectivity during treadmill walking.A novel technique based on reliable source localization and effective connectivity is proposed.The Motor Cortex drives leg muscles even during stereotyped locomotion.The results counter the traditional view of limited Cortex involvement in stereotyped locomotion.


Brain Topography | 2014

Brain Responses to Emotional Stimuli During Breath Holding and Hypoxia: An Approach Based on the Independent Component Analysis

Danilo Menicucci; Fiorenzo Artoni; Remo Bedini; Alessandro Pingitore; Mirko Passera; Alberto Landi; Antonio L’Abbate; Laura Sebastiani; Angelo Gemignani

Voluntary breath holding represents a physiological model of hypoxia. It consists of two phases of oxygen saturation dynamics: an initial slow decrease (normoxic phase) followed by a rapid drop (hypoxic phase) during which transitory neurological symptoms as well as slight impairment of integrated cerebral functions, such as emotional processing, can occur. This study investigated how breath holding affects emotional processing. To this aim we characterized the modulation of event-related potentials (ERPs) evoked by emotional-laden pictures as a function of breath holding time course. We recorded ERPs during free breathing and breath holding performed in air by elite apnea divers. We modeled brain responses during free breathing with four independent components distributed over different brain areas derived by an approach based on the independent component analysis (ICASSO). We described ERP changes during breath holding by estimating amplitude scaling and time shifting of the same components (component adaptation analysis). Component 1 included the main EEG features of emotional processing, had a posterior localization and did not change during breath holding; component 2, localized over temporo-frontal regions, was present only in unpleasant stimuli responses and decreased during breath holding, with no differences between breath holding phases; component 3, localized on the fronto-central midline regions, showed phase-independent breath holding decreases; component 4, quite widespread but with frontal prevalence, decreased in parallel with the hypoxic trend. The spatial localization of these components was compatible with a set of processing modules that affects the automatic and intentional controls of attention. The reduction of unpleasant-related ERP components suggests that the evaluation of aversive and/or possibly dangerous situations might be altered during breath holding.


ieee international conference on rehabilitation robotics | 2013

Selecting the best number of synergies in gait: Preliminary results on young and elderly people

Fiorenzo Artoni; V. Monaco; Silvestro Micera

Matrix factorization algorithms are increasingly used to extract meaningful information from multivariate EMG datasets. However a key issue is the selection of the number of synergies (i.e., model order) to retain. In this preliminary work a set of criteria, based on Independent Component Analysis, was developed to determine the number of synergies to extract from a multivariate EMG dataset, and applied on EMG signals acquired from 12 leg muscles during walking at different cadences (40, 60, ..., 140 strides per minute) in young and elderly subjects. The method was tested on ad-hoc created datasets with a predetermined number of embedded sources and amplitude of added noise. Young subjects walking patterns are explained by a number of synergies not significantly different with respect to elderly subjects. The inter-subject variability is greater at high (elderly) and low (young and elderly) cadences suggesting that the walking pattern is more stable at central frequencies. The type of preprocessing influences the number of underlying synergies: an increased number of independent components is needed to explain the variability of unfiltered data. The proposed method could serve as a guideline to scientists in the evaluation of walking performance. Further developments will include a validation of the method and its extension to other factorization algorithms.


Brain Research | 2015

Inefficient stimulus processing at encoding affects formation of high-order general representation: A study on cross-modal word-stem completion task

Laura Sebastiani; Eleonora Castellani; Angelo Gemignani; Fiorenzo Artoni; Danilo Menicucci

Priming is an implicit memory effect in which previous exposure to one stimulus influences the response to another stimulus. The main characteristic of priming is that it occurs without awareness. Priming takes place also when the physical attributes of previously studied and test stimuli do not match; in fact, it greatly refers to a general stimulus representation activated at encoding independently of the sensory modality engaged. Our aim was to evaluate whether, in a cross-modal word-stem completion task, negative priming scores could depend on inefficient word processing at study and therefore on an altered stimulus representation. Words were presented in the auditory modality, and word-stems to be completed in the visual modality. At study, we recorded auditory ERPs, and compared the P300 (attention/memory) and N400 (meaning processing) of individuals with positive and negative priming. Besides classical averaging-based ERPs analysis, we used an ICA-based method (ErpICASSO) to separate the potentials related to different processes contributing to ERPs. Classical analysis yielded significant difference between the two waves across the whole scalp. ErpICASSO allowed separating the novelty-related P3a and the top-down control-related P3b sub-components of P300. Specifically, in the component C3, the positive deflection identifiable as P3b, was significantly greater in the positive than in the negative priming group, while the late negative deflection corresponding to the parietal N400, was reduced in the positive priming group. In conclusion, inadequacy of specific processes at encoding, such as attention and/or meaning retrieval, could generate weak semantic representations, making words less accessible in subsequent implicit retrieval.


Scientific Reports | 2017

A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback

Edoardo D’Anna; Francesco Maria Petrini; Fiorenzo Artoni; Igor Popovic; Igor Simanić; Stanisa Raspopovic; Silvestro Micera

According to amputees, sensory feedback is amongst the most important features lacking from commercial prostheses. Although restoration of touch by means of implantable neural interfaces has been achieved, these approaches require surgical interventions, and their long-term usability still needs to be fully investigated. Here, we developed a non-invasive alternative which maintains some of the advantages of invasive approaches, such as a somatotopic sensory restitution scheme. We used transcutaneous electrical nerve stimulation (TENS) to induce referred sensations to the phantom hand of amputees. These sensations were characterized in four amputees over two weeks. Although the induced sensation was often paresthesia, the location corresponded to parts of the innervation regions of the median and ulnar nerves, and electroencephalographic (EEG) recordings confirmed the presence of appropriate responses in relevant cortical areas. Using these sensations as feedback during bidirectional prosthesis control, the patients were able to perform several functional tasks that would not be possible otherwise, such as applying one of three levels of force on an external sensor. Performance during these tasks was high, suggesting that this approach could be a viable alternative to the more invasive solutions, offering a trade-off between the quality of the sensation, and the invasiveness of the intervention.


PLOS ONE | 2014

Pre-Impact Fall Detection: Optimal Sensor Positioning Based on a Machine Learning Paradigm

Dario Martelli; Fiorenzo Artoni; V. Monaco; Angelo M. Sabatini; Silvestro Micera

The aim of this study was to identify the best subset of body segments that provides for a rapid and reliable detection of the transition from steady walking to a slipping event. Fifteen healthy young subjects managed unexpected perturbations during walking. Whole-body 3D kinematics was recorded and a machine learning algorithm was developed to detect perturbation events. In particular, the linear acceleration of all the body segments was parsed by Independent Component Analysis and a Neural Network was used to classify walking from unexpected perturbations. The Mean Detection Time (MDT) was 351±123 ms with an Accuracy of 95.4%. The procedure was repeated with data related to different subsets of all body segments whose variability appeared strongly influenced by the perturbation-induced dynamic modifications. Accordingly, feet and hands accounted for most data information and the performance of the algorithm were slightly reduced using their combination. Results support the hypothesis that, in the framework of the proposed approach, the information conveyed by all the body segments is redundant to achieve effective fall detection, and suitable performance can be obtained by simply observing the kinematics of upper and lower distal extremities. Future studies are required to assess the extent to which such results can be reproduced in older adults and in different experimental conditions.


Frontiers in Human Neuroscience | 2017

Delta Power Is Higher and More Symmetrical in Ischemic Stroke Patients with Cortical Involvement

Chiara Fanciullacci; Federica Bertolucci; Giuseppe Lamola; Alessandro Panarese; Fiorenzo Artoni; Silvestro Micera; Bruno Rossi; Carmelo Chisari

A brain injury resulting from unilateral stroke critically alters brain functionality and the complex balance within the cortical activity. Such modifications may critically depend on lesion location and cortical involvement. Indeed, recent findings pointed out the necessity of applying a stratification based on lesion location when investigating inter-hemispheric balance in stroke. Here, we tested whether cortical involvement could imply differences in band-specific activity and brain symmetry in post stroke patients with cortico-subcortical and subcortical strokes. We explored brain activity related to lesion location through EEG power analysis and quantitative Electroencephalography (qEEG) measures. Thirty stroke patients in the subacute phase and 10 neurologically intact age-matched right-handed subjects were enrolled. Stroke patients were equally subdivided in two groups based on lesion location: cortico-subcortical (CS, mean age ± SD: 72.21 ± 10.97 years; time since stroke ± SD: 31.14 ± 11.73 days) and subcortical (S, mean age ± SD: 68.92 ± 10.001 years; time since stroke ± SD: 26.93 ± 13.08 days) group. We assessed patients’ neurological status by means of National Institutes of Health Stroke Scale (NIHSS). High density EEG at rest was recorded and power spectral analysis in Delta (1–4 Hz) and Alpha (8–14 Hz) bands was performed. qEEG metrics as pairwise derived Brain Symmetry Index (pdBSI) and Delta/Alpha Ratio (DAR) were computed and correlated with NIHSS score. S showed a lower Delta power in the Unaffected Hemisphere (UH) compared to Affected Hemisphere (AH; z = −1.98, p < 0.05) and a higher Alpha power compared to CS (z = −2.18, p < 0.05). pdBSI was negatively correlated with NIHSS (R = −0.59, p < 0.05). CS showed a higher value and symmetrical distribution of Delta band activity (z = −2.37, p < 0.05), confirmed also by a higher DAR value compared to S (z = −2.48, p < 0.05). Patients with cortico-subcortical and subcortical lesions show different brain symmetry in the subacute phase. Interestingly, in subcortical stroke patient brain activity is related with the clinical function. qEEG measures can be explicative of brain activity related to lesion location and they could allow precise definition of diagnostic-therapeutic algorithms in stroke patients.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2018

How are Muscle Synergies Affected by Electromyography Pre-Processing?

Paulina Kieliba; Peppino Tropea; Elvira Pirondini; M. Coscia; Silvestro Micera; Fiorenzo Artoni

Muscle synergies have been used for decades to explain a variety of motor behaviors, both in humans and animals and, more recently, to steer rehabilitation strategies. However, many sources of variability such as factorization algorithms, criteria for dimensionality reduction and data pre-processing constitute a major obstacle to the successful comparison of the results obtained by different research groups. Starting from the canonical EMG processing we determined how variations in filter cut-off frequencies and normalization methods, commonly found in literature, affect synergy weights and inter-subject similarity (ISS) using experimental data related to a 15-muscles upper-limb reaching task. Synergy weights were not significantly altered by either normalization (maximum voluntary contraction – MVC – or maximum amplitude of the signal - SELF) or band-pass filter ([20–500 Hz] or [50–500] Hz). Normalization did, however, alter the amount of variance explained by a set of synergies, which is a criterion often used for model order selection. Comparing different low-pass (LP) filters (0.5 Hz, 4 Hz, 10 Hz, 20 Hz cut-offs) we showed that increasing the low pass filter cut-off had the effect of decreasing the variance accounted for by a set number of synergies and affected individual muscle contributions. Extreme smoothing (i.e., LP cut-off 0.5 Hz) enhanced the contrast between active and inactive muscles but had an unpredictable effect on the ISS. The results presented here constitute a further step towards a thoughtful EMG pre-processing for the extraction of muscle synergies.

Collaboration


Dive into the Fiorenzo Artoni's collaboration.

Top Co-Authors

Avatar

Silvestro Micera

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Chiara Fanciullacci

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Panarese

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Calogero Maria Oddo

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clara Genna

Sant'Anna School of Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge