Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Firas Khatib is active.

Publication


Featured researches published by Firas Khatib.


Nature | 2010

Predicting protein structures with a multiplayer online game

Seth Cooper; Firas Khatib; Adrien Treuille; Janos Barbero; Jeehyung Lee; Michael Beenen; Andrew Leaver-Fay; David Baker; Zoran Popović; Foldit Players

People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully ‘crowd-sourced’ through games, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.


Nature Structural & Molecular Biology | 2011

Crystal structure of a monomeric retroviral protease solved by protein folding game players

Firas Khatib; Frank DiMaio; Seth Cooper; Maciej Kazmierczyk; Miroslaw Gilski; Szymon Krzywda; Helena Zábranská; Iva Pichová; James Thompson; Zoran Popović; Mariusz Jaskolski; David Baker

Following the failure of a wide range of attempts to solve the crystal structure of M-PMV retroviral protease by molecular replacement, we challenged players of the protein folding game Foldit to produce accurate models of the protein. Remarkably, Foldit players were able to generate models of sufficient quality for successful molecular replacement and subsequent structure determination. The refined structure provides new insights for the design of antiretroviral drugs.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Algorithm discovery by protein folding game players

Firas Khatib; Seth Cooper; Michael D. Tyka; Kefan Xu; Ilya Makedon; Zoran Popović; David Baker; Foldit Players

Foldit is a multiplayer online game in which players collaborate and compete to create accurate protein structure models. For specific hard problems, Foldit player solutions can in some cases outperform state-of-the-art computational methods. However, very little is known about how collaborative gameplay produces these results and whether Foldit player strategies can be formalized and structured so that they can be used by computers. To determine whether high performing player strategies could be collectively codified, we augmented the Foldit gameplay mechanics with tools for players to encode their folding strategies as “recipes” and to share their recipes with other players, who are able to further modify and redistribute them. Here we describe the rapid social evolution of player-developed folding algorithms that took place in the year following the introduction of these tools. Players developed over 5,400 different recipes, both by creating new algorithms and by modifying and recombining successful recipes developed by other players. The most successful recipes rapidly spread through the Foldit player population, and two of the recipes became particularly dominant. Examination of the algorithms encoded in these two recipes revealed a striking similarity to an unpublished algorithm developed by scientists over the same period. Benchmark calculations show that the new algorithm independently discovered by scientists and by Foldit players outperforms previously published methods. Thus, online scientific game frameworks have the potential not only to solve hard scientific problems, but also to discover and formalize effective new strategies and algorithms.


Nature Biotechnology | 2012

Increased Diels-Alderase activity through backbone remodeling guided by Foldit players

Christopher B. Eiben; Justin B. Siegel; Jacob B. Bale; Seth Cooper; Firas Khatib; Betty W. Shen; Foldit Players; Barry L. Stoddard; Zoran Popović; David Baker

Computational enzyme design holds promise for the production of renewable fuels, drugs and chemicals. De novo enzyme design has generated catalysts for several reactions, but with lower catalytic efficiencies than naturally occurring enzymes. Here we report the use of game-driven crowdsourcing to enhance the activity of a computationally designed enzyme through the functional remodeling of its structure. Players of the online game Foldit were challenged to remodel the backbone of a computationally designed bimolecular Diels-Alderase to enable additional interactions with substrates. Several iterations of design and characterization generated a 24-residue helix-turn-helix motif, including a 13-residue insertion, that increased enzyme activity >18-fold. X-ray crystallography showed that the large insertion adopts a helix-turn-helix structure positioned as in the Foldit model. These results demonstrate that human creativity can extend beyond the macroscopic challenges encountered in everyday life to molecular-scale design problems.Computational enzyme design holds promise for the production of renewable fuels, drugs and chemicals. De novo enzyme design has generated catalysts for several reactions, but with lower catalytic efficiencies than naturally occurring enzymes. Here we report the use of game-driven crowdsourcing to enhance the activity of a computationally designed enzyme through the functional remodeling of its structure. Players of the online game Foldit were challenged to remodel the backbone of a computationally designed bimolecular Diels-Alderase to enable additional interactions with substrates. Several iterations of design and characterization generated a 24-residue helix-turn-helix motif, including a 13-residue insertion, that increased enzyme activity >18-fold. X-ray crystallography showed that the large insertion adopts a helix-turn-helix structure positioned as in the Foldit model. These results demonstrate that human creativity can extend beyond the macroscopic challenges encountered in everyday life to molecular-scale design problems.


foundations of digital games | 2010

The challenge of designing scientific discovery games

Seth Cooper; Adrien Treuille; Janos Barbero; Andrew Leaver-Fay; Kathleen Tuite; Firas Khatib; Alex Cho Snyder; Michael Beenen; David Salesin; David Baker; Zoran Popović

Incorporating the individual and collective problem solving skills of non-experts into the scientific discovery process could potentially accelerate the advancement of science. This paper discusses the design process used for Foldit, a multiplayer online biochemistry game that presents players with computationally difficult protein folding problems in the form of puzzles, allowing ordinary players to gain expertise and help solve these problems. The principle challenge of designing such scientific discovery games is harnessing the enormous collective problem-solving potential of the game playing population, who have not been previously introduced to the specific problem, or, often, the entire scientific discipline. To address this challenge, we took an iterative approach to designing the game, incorporating feedback from players and biochemical experts alike. Feedback was gathered both before and after releasing the game, to create the rules, interactions, and visualizations in Foldit that maximize contributions from game players. We present several examples of how this approach guided the games design, and allowed us to improve both the quality of the gameplay and the application of player problem-solving.


intelligent systems in molecular biology | 2006

Rapid knot detection and application to protein structure prediction

Firas Khatib; Matthew T. Weirauch; Carol A. Rohl

MOTIVATION Knots in polypeptide chains have been found in very few proteins, and consequently should be generally avoided in protein structure prediction methods. Most effective structure prediction methods do not model the protein folding process itself, but rather seek only to correctly obtain the final native state. Consequently, the mechanisms that prevent knots from occurring in native proteins are not relevant to the modeling process, and as a result, knots can occur with significantly higher frequency in protein models. Here we describe Knotfind, a simple algorithm for knot detection that is fast enough for structure prediction, where tens or hundreds of thousands of conformations may be sampled during the course of a prediction. We have used this algorithm to characterize knots in large populations of model structures generated for targets in CASP 5 and CASP 6 using the Rosetta homology-based modeling method. RESULTS Analysis of CASP5 models suggested several possible avenues for introduction of knots into these models, and these insights were applied to structure prediction in CASP 6, resulting in a significant decrease in the proportion of knotted models generated. Additionally, using the knot detection algorithm on structures in the Protein Data Bank, a previously unreported deep trefoil knot was found in acetylornithine transcarbamylase. AVAILABILITY The Knotfind algorithm is available in the Rosetta structure prediction program at http://www.rosettacommons.org.


Proteins | 2014

WeFold: A coopetition for protein structure prediction

George A. Khoury; Adam Liwo; Firas Khatib; Hongyi Zhou; Gaurav Chopra; Jaume Bacardit; Leandro Oliveira Bortot; Rodrigo Antonio Faccioli; Xin Deng; Yi He; Paweł Krupa; Jilong Li; Magdalena A. Mozolewska; Adam K. Sieradzan; James Smadbeck; Tomasz Wirecki; Seth Cooper; Jeff Flatten; Kefan Xu; David Baker; Jianlin Cheng; Alexandre C. B. Delbem; Christodoulos A. Floudas; Chen Keasar; Michael Levitt; Zoran Popović; Harold A. Scheraga; Jeffrey Skolnick; Silvia Crivelli; Foldit Players

The protein structure prediction problem continues to elude scientists. Despite the introduction of many methods, only modest gains were made over the last decade for certain classes of prediction targets. To address this challenge, a social‐media based worldwide collaborative effort, named WeFold, was undertaken by 13 labs. During the collaboration, the laboratories were simultaneously competing with each other. Here, we present the first attempt at “coopetition” in scientific research applied to the protein structure prediction and refinement problems. The coopetition was possible by allowing the participating labs to contribute different components of their protein structure prediction pipelines and create new hybrid pipelines that they tested during CASP10. This manuscript describes both successes and areas needing improvement as identified throughout the first WeFold experiment and discusses the efforts that are underway to advance this initiative. A footprint of all contributions and structures are publicly accessible at http://www.wefold.org. Proteins 2014; 82:1850–1868.


foundations of digital games | 2011

Analysis of social gameplay macros in the Foldit cookbook

Seth Cooper; Firas Khatib; Ilya Makedon; Hao Lü; Janos Barbero; David Baker; James Fogarty; Zoran Popović; Foldit Players

As games grow in complexity, gameplay needs to provide players with powerful means of managing this complexity. One approach is to give automation tools to players. In this paper, we analyze an in-game automation tool, the Foldit cookbook, for the scientific discovery game Foldit. The cookbook allows players to write recipes that can automate their strategies. Through analysis of cookbook usage, we observe that players take advantage of social mechanisms in the game to share, run, and modify recipes. Further, players take advantage of both a simplified visual programming interface and a text-based scripting interface for creating recipes. This indicates that there is potential for using automation tools to disseminate expert knowledge, and that it is useful to provide support for multiple authoring styles, especially for games where the final game goal is unbounded or hard to attain.


Acta Crystallographica Section D-biological Crystallography | 2011

High-resolution structure of a retroviral protease folded as a monomer.

Miroslaw Gilski; Maciej Kazmierczyk; Szymon Krzywda; Helena Zábranská; Seth Cooper; Zoran Popović; Firas Khatib; Frank DiMaio; James Thompson; David Baker; Iva Pichová; Mariusz Jaskolski

The crystal structure of Mason–Pfizer monkey virus protease folded as a monomer has been solved by molecular replacement using a model generated by players of the online game Foldit. The structure shows at high resolution the details of a retroviral protease folded as a monomer which can guide rational design of protease dimerization inhibitors as retroviral drugs.


Nature Communications | 2016

Determining crystal structures through crowdsourcing and coursework

Scott Horowitz; Brian Koepnick; Raoul Martin; Agnes Tymieniecki; Amanda A. Winburn; Seth Cooper; Jeff Flatten; David S. Rogawski; Nicole M. Koropatkin; Tsinatkeab T. Hailu; Neha Jain; Philipp Koldewey; Logan S. Ahlstrom; Matthew R. Chapman; Andrew P. Sikkema; Meredith A. Skiba; Finn P. Maloney; Felix R. M. Beinlich; Foldit Players; Zoran Popović; David Baker; Firas Khatib; James C. A. Bardwell

We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.

Collaboration


Dive into the Firas Khatib's collaboration.

Top Co-Authors

Avatar

David Baker

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Seth Cooper

Northeastern University

View shared research outputs
Top Co-Authors

Avatar

Zoran Popović

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Foldit Players

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Leaver-Fay

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Janos Barbero

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jeff Flatten

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Adrien Treuille

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge