Firoz Shah Tuglak Khan
Indian Institute of Technology Kanpur
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Firoz Shah Tuglak Khan.
Inorganic Chemistry | 2014
Debangsu Sil; Firoz Shah Tuglak Khan; Sankar Prasad Rath
The binding of a series of substituted thiophenols as axial ligands on a highly flexible ethane-bridged diiron(III)bisporphyrin framework has been investigated as a model of diheme proteins. Spectroscopic characterization reveals a high-spin (S = 5/2) state of iron for all of the pentacoordinate thiophenolato complexes. In the UV-visible spectra of the complexes, the positions of the Soret and band I have been found to be dependent on the pKa of thiophenols. The alternating shift pattern, which has opposite sign of the chemical shifts for meta- vs. ortho- and para-protons in the (1)H NMR spectra, is attributed to negative and positive spin densities, respectively, on thiophenolate carbon atoms and is indicative of π-spin delocalization to the bound thiophenolate ligand. The Fe(III)/Fe(II) redox couple of the complexes bears a linear relationship with the pKa of thiophenol and is found to be positively shifted with decreasing pKa. The effect of the electronic nature of the substituent on the thiophenolate ring has also been demonstrated in which a large potential range of 540 mV was observed (in contrast to the value of only 270 mV in case of monoheme analogues) for the Fe(III)/Fe(II) redox couple on going from monoheme to diheme and is attributed to the interheme interaction. Also, the Fe(III)/Fe(II) redox potential of the thiophenolato complexes has been found to be more positively shifted compared to their phenolato analogues, which was further supported by DFT calculation. The addition of another thiophenol at the sixth axial position of the five-coordinate thiophenolato complex causes a change in iron spin from high (S = 5/2) to low (S = 1/2) along with a large positive shift of 490 mV for the Fe(III)/Fe(II) redox couple.
Inorganic Chemistry | 2016
Debangsu Sil; Susovan Bhowmik; Firoz Shah Tuglak Khan; Sankar Prasad Rath
The synthesis, structure, and properties of a new family of five ethane-bridged dimanganese(III) μ-hydroxo bisporphyrins with the same core structure but different counteranions are reported here. Additions of 10% Brønsted acids such as HI, HBF4, HSbF6, HPF6, and HClO4 to a dichloromethane solution of the dichloro dimanganese(III) bisporphyrin produces complexes having a remarkably bent μ-hydroxo group with I3(-), BF4(-), SbF6(-), PF6(-), and ClO4(-) as counteranions, respectively. The X-ray structures of all complexes have been determined, which have revealed the presence of two equivalent high-spin manganese(III) centers with equally distorted porphyrin rings in the complexes, in sharp contrast with the case for the diiron(III) μ-hydroxo bisporphyrin analogues. (1)H NMR spectra have shown highly deshielded meso resonances, unlike the case for the diiron(III) analogues, where the meso resonances are highly shielded. The variable-temperature magnetic data have been subjected to a least-squares fit which provides a moderate antiferromagnetic coupling through the hydroxo bridge between two zero-field split Mn(III) centers with coupling constant (J) values ranging from -29.5 to -38.6 cm(-1). Fairly good correlations are observed for J with Mn-O(H) distances and Mn-O(H)-Mn angles for all the complexes except for that having an I3(-) counteranion. DFT calculations support the stabilization of two equivalent high-spin Mn(III) porphyrin cores in the complexes and have also explored the role of metal spin in controlling porphyrin ring deformation. Unlike diiron(III) μ-hydroxo bisporphyrin complexes, the dimanganese(III) analogues do not have easily accessible spin states of the metal attainable by subtle environmental perturbations and, therefore, can only stabilize the high-spin state with a variety of counteranions.
Angewandte Chemie | 2017
Akhil Kumar Singh; Firoz Shah Tuglak Khan; Sankar Prasad Rath
The interaction between two AgII porphyrins, connected covalently through a highly flexible ethane bridge, in a metalloporphyrin dimer has been investigated upon stepwise oxidation. X-ray structure determination of one and two-electron oxidized complexes has clearly revealed only metal-centered oxidation that results in short Ag-N (porphyrin) distance with large distortion in the porphyrin macrocycle. The 2e-oxidized complex exhibits significant metallophilic interaction in the form of a close AgIII ⋅⋅⋅AgIII contact that brings two porphyrin rings more cofacial with syn-conformation, which would otherwise stabilize in an anti-form. The interaction also leads to an intense emission peak at 546 nm at 77 K in the photoluminescence study.
Chemistry: A European Journal | 2016
Debangsu Sil; Firoz Shah Tuglak Khan; Sankar Prasad Rath
The synthesis, structure, and properties of bischloro, μ-oxo, and a family of μ-hydroxo complexes (with BF4 (-) , SbF6 (-) , and PF6 (-) counteranions) of diethylpyrrole-bridged diiron(III) bisporphyrins are reported. Spectroscopic characterization has revealed that the iron centers of the bischloro and μ-oxo complexes are in the high-spin state (S=(5) /2 ). However, the two iron centers in the diiron(III) μ-hydroxo complexes are equivalent with high spin (S=(5) /2 ) in the solid state and an intermediate-spin state (S=(3) /2 ) in solution. The molecules have been compared with previously known diiron(III) μ-hydroxo complexes of ethane-bridged bisporphyrin, in which two different spin states of iron were stabilized under the influence of counteranions. The dimanganese(III) analogues were also synthesized and spectroscopically characterized. A comparison of the X-ray structural parameters between diethylpyrrole and ethane-bridged μ-hydroxo bisporphyrins suggest an increased separation, and hence, less interactions between the two heme units of the former. As a result, unlike the ethane-bridged μ-hydroxo complex, both iron centers become equivalent in the diethylpyrrole-bridged complex and their spin state remains unresponsive to the change in counteranion. The iron(III) centers of the diethylpyrrole-bridged diiron(III) μ-oxo bisporphyrin undergo very strong antiferromagnetic interactions (J=-137.7 cm(-1) ), although the coupling constant is reduced to only a weak value in the μ-hydroxo complexes (J=-42.2, -44.1, and -42.4 cm(-1) for the BF4 , SbF6 , and PF6 complexes, respectively).
Chemistry: A European Journal | 2016
Firoz Shah Tuglak Khan; Anjani Kumar Pandey; Sankar Prasad Rath
Addition of 2,4,6-trinitrophenol (HTNP) to an ethene-bridged diiron(III) μ-oxo bisporphyrin (1) in CH2 Cl2 initially leads to the formation of diiron(III) μ-hydroxo bisporphyrin (2⋅TNP) with a phenolate counterion that, after further addition of HTNP or dissolution in a nonpolar solvent, converts to a diiron(III) complex with axial phenoxide coordination (3⋅(TNP)2 ). The progress of the reaction from μ-oxo to μ-hydroxo to axially ligated complex has been monitored in solution by using 1 H NMR spectroscopy because their signals appear in three different and distinct spectral regions. The X-ray structure of 2⋅TNP revealed that the nearly planar TNP counterion fits perfectly within the bisporphyrin cavity to form a strong hydrogen bond with the μ-hydroxo group, which thus stabilizes the two equivalent iron centers. In contrast, such counterions as I5 , I3 , BF4 , SbF6 , and PF6 are found to be tightly associated with one of the porphyrin rings and, therefore, stabilize two different spin states of iron in one molecule. A spectroscopic investigation of 2⋅TNP has revealed the presence of two equivalent iron centers with a high-spin state (S=5/2) in the solid state that converts to intermediate spin (S=3/2) in solution. An extensive computational study by using a range of DFT methods was performed on 2⋅TNP and 2+ , and clearly supports the experimentally observed spin flip triggered by hydrogen-bonding interactions. The counterion is shown to perturb the spin-state ordering through, for example, hydrogen-bonding interactions, switched positions between counterion and axial ligand, ion-pair interactions, and charge polarization. The present investigation thus provides a clear rationalization of the unusual counterion-specific spin states observed in the μ-hydroxo bisporphyrins that have so far remained the most outstanding issue.
Journal of Chemical Sciences | 2018
Firoz Shah Tuglak Khan; Anjani Kumar Pandey; Sankar Prasad Rath
The multiheme cytochrome c involves extensive interaction among the heme centers to enable them to perform a wide variety of enzymatic activities. In an attempt to exploit such heme–heme interactions in the synthetic diheme, an ethane-bridged diiron(III) porphyrin dimer has been utilized that can switch easily between syn and anti conformations due to highly flexible nature of the bridge. Upon protonation using 5% aqueous Brønsted acid, the dichloromethane solution of diiron(III)-
Inorganic Chemistry | 2018
Firoz Shah Tuglak Khan; Sayantani Banerjee; Devesh Kumar; Sankar Prasad Rath
Dalton Transactions | 2017
Firoz Shah Tuglak Khan; Tapas Guchhait; Sujit Sasmal; Sankar Prasad Rath
\upmu
Coordination Chemistry Reviews | 2017
Tapas Guchhait; Sujit Sasmal; Firoz Shah Tuglak Khan; Sankar Prasad Rath
Dalton Transactions | 2018
Dipti Lai; Firoz Shah Tuglak Khan; Sankar Prasad Rath
μ-oxo porphyrin dimer immediately changes its color from green to red leading to the formation of a series of