Fj Rodriguez
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fj Rodriguez.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Gonçalo Castelo-Branco; Joseph Wagner; Fj Rodriguez; Julianna Kele; Kyle M. Sousa; Nina Rawal; Hilda Amalia Pasolli; Elaine Fuchs; Jan Kitajewski; Ernest Arenas
The Wnts are a family of glycoproteins that regulate cell proliferation, fate decisions, and differentiation. In our study, we examined the contribution of Wnts to the development of ventral midbrain (VM) dopaminergic (DA) neurons. Our results show that β-catenin is expressed in DA precursor cells and that β-catenin signaling takes place in these cells, as assessed in TOPGAL [Tcf optimal-promoter β-galactosidase] reporter mice. We also found that Wnt-1, -3a, and -5a expression is differentially regulated during development and that partially purified Wnts distinctively regulate VM development. Wnt-3a promoted the proliferation of precursor cells expressing the orphan nuclear receptor-related factor 1 (Nurr1) but did not increase the number of tyrosine hydroxylase-positive neurons. Instead, Wnt-1 and -5a increased the number of rat midbrain DA neurons in rat embryonic day 14.5 precursor cultures by two distinct mechanisms. Wnt-1 predominantly increased the proliferation of Nurr1+ precursors, up-regulated cyclins D1 and D3, and down-regulated p27 and p57 mRNAs. In contrast, Wnt-5a primarily increased the proportion of Nurr1+ precursors that acquired a neuronal DA phenotype and up-regulated the expression of Ptx3 and c-ret mRNA. Moreover, the soluble cysteine-rich domain of Frizzled-8 (a Wnt inhibitor) blocked endogenous Wnts and the effects of Wnt-1 and -5a on proliferation and the acquisition of a DA phenotype in precursor cultures. These findings indicate that Wnts are key regulators of proliferation and differentiation of DA precursors during VM neurogenesis and that different Wnts have specific and unique activity profiles.
PLOS ONE | 2011
Cm Fernandez-Martos; C Gonzalez-Fernandez; P Gonzalez; A Maqueda; Ernest Arenas; Fj Rodriguez
Background Spinal cord injury is a major cause of disability that has no clinically accepted treatment. Functional decline following spinal cord injury is caused by mechanical damage, secondary cell death, reactive gliosis and a poor regenerative capacity of damaged axons. Wnt proteins are a family of secreted glycoproteins that play key roles in different developmental processes although little is known of the expression patterns and functions of Wnts in the adult central nervous system in normal or diseased states. Findings Using qRT-PCR analysis, we demonstrate that mRNA encoding most Wnt ligands and soluble inhibitors are constitutively expressed in the healthy adult spinal cord. Strikingly, contusion spinal cord injury induced a time-dependent increase in Wnt mRNA expression from 6 hours until 28 days post-injury, and a narrow peak in the expression of soluble Wnt inhibitors between 1 and 3 days post-injury. These results are consistent with the increase in the migration shift, from day 1 to 7, of the intracellular Wnt signalling component, Dishevelled-3. Moreover, after an initial decrease by 1 day, we also found an increase in phosphorylation of the Wnt co-receptor, low-density lipoprotein receptor-related protein 6, and an increase in active β-catenin protein, both of which suffer a dramatic change, from a homogeneous expression pattern in the grey matter to a disorganized injury-induced pattern. Conclusions Our results suggest a role for Wnts in spinal cord homeostasis and injury. We demonstrate that after injury Wnt signalling is activated via the Wnt/β-catenin and possibly other pathways. These findings provide an important foundation to further address the function of individual Wnt proteins in vivo and the pathophysiology of spinal cord injury.
Molecular and Cellular Neuroscience | 2002
Peter Åkerud; Pontus C. Holm; Gonçalo Castelo-Branco; Kyle M. Sousa; Fj Rodriguez; Ernest Arenas
Persephin (PSP) is a neurotrophic factor of the GDNF family that has been found to promote the survival of multiple populations of neurons. In the present study we have examined: (1) the mechanism of action and the function of PSP on nigrostriatal dopamine neurons and (2) the therapeutic potential of PSP, delivered by neural stem cells (NSCs) in a model of Parkinsons disease. Interestingly we found that the prenatal ventral mesencephalon and the newborn striatum express high levels of PSP mRNA. Moreover, midbrain dopamine neurons express its preferred receptor GFRalpha4, allowing a cis type of action of PSP on dopamine neurons. Primary culture studies showed that PSP is as potent and efficacious as GDNF at promoting both survival and neuritogenesis of midbrain dopamine neurons. To study the function and therapeutic potential of PSP in vivo we engineered NSCs to overexpress PSP. PSP-c17.2 cells were found to stably express PSP mRNA and protein for at least 3 months in vivo, to disperse within the striatum, and to give rise to neurons, astrocytes, and a large proportion of oligodendrocytes that integrated within white matter tracts in the striatum. Moreover, PSP-c17.2 cells enhanced dopamine-dependent behavioral parameters in unlesioned mice and prevented the loss of dopamine neurons and the behavioral impairment of mice receiving intrastriatal 6-OHDA injections. Thus, our findings are consistent with a direct action of PSP on developing and adult midbrain dopamine neurons and suggest that the delivery of PSP by NSCs may constitute a very useful strategy in the treatment of Parkinsons disease.
Development | 2003
Pontus C. Holm; Fj Rodriguez; Adelheid Kresse; Josep M. Canals; Inmaculada Silos-Santiago; Ernest Arenas
The role of glial cell-line derived neurotrophic factor (GDNF) and neurotrophins in the development of locus coeruleus noradrenergic neurons was evaluated. We found that two neurotrophic factors previously reported to prevent the degeneration of lesioned adult central noradrenergic neurons, GDNF and neurotrophin 3 (NT3), do not play significant roles in the prenatal development of locus coeruleus noradrenergic neurons, as demonstrated by: (1) the lack of alterations in double Gdnf/Nt3 null mutant mice; and (2) the lack of survival-promoting effects of GDNF and/or NT3 in rat E13.5 primary cultures. In contrast, null mutant mice for TrkB, the tyrosine kinase receptor for brain-derived neurotrophic factor and neurotrophin 4, displayed a clear loss of locus coeruleus noradrenergic neurons. In accordance with this, treatment of rat E13.5 primary cultures with TrkB ligands prevented the early loss of noradrenergic neurons and maintained their survival for up to 6 days in vitro. Moreover, an additional 5-10-fold increase in the number of tyrosine hydroxylase positive noradrenergic neurons was detected after 12 hours in culture. This second effect of TrkB ligands involved neither proliferation nor survival, because the number of BrdU- or TUNEL-positive noradrenergic neurons did not change and the effect was elicited by delayed administration of either factor. Because TrkB ligands increased the number of tyrosine hydroxylase-positive cells expressing Phox2a, a paired homeodomain protein required for the development of locus coeruleus noradrenergic neurons, but did not affect the number of Phox2a-positive tyrosine hydroxylase-negative cells, our results suggest that the second effect of TrkB ligands may involve promoting or inducing a noradrenergic phenotype. In summary, our findings suggest that, unlike NT3 and GDNF, TrkB ligands are required and sufficient to promote the development of central noradrenergic neurons.
PLOS ONE | 2012
Cm Fernandez-Martos; P Gonzalez; Fj Rodriguez
Background Spinal cord injury is a major cause of long-term disability and has no current clinically accepted treatment. Leptin, an adipocyte-derived hormone, is best known as a regulator of food intake and energy expenditure. Interestingly, several studies have demonstrated that leptin has significant effects on proliferation and cell survival in different neuropathologies. Here, we sought to evaluate the role of leptin after spinal cord injury. Findings Based on its proposed neuroprotective role, we have evaluated the effects of a single, acute intraparenchymal injection of leptin in a clinically relevant animal model of spinal cord injury. As determined by quantitative Real Time-PCR, endogenous leptin and the long isoform of the leptin receptor genes show time-dependent variations in their expression in the healthy and injured adult spinal cord. Immunohistochemical analysis of post-injury tissue showed the long isoform of the leptin receptor expression in oligodendrocytes and, to a lesser extent, in astrocytes, microglia/macrophages and neurons. Moreover, leptin administered after spinal cord injury increased the expression of neuroprotective genes, reduced caspase-3 activity and decreased the expression of pro-inflammatory molecules. In addition, histological analysis performed at the completion of the study showed that leptin treatment reduced microglial reactivity and increased caudal myelin preservation, but it did not modulate astroglial reactivity. Consequently, leptin improved the recovery of sensory and locomotor functioning. Conclusions Our data suggest that leptin has a prominent neuroprotective and anti-inflammatory role in spinal cord damage and highlights leptin as a promising therapeutic agent.
PLOS ONE | 2012
P Gonzalez; Cm Fernandez-Martos; C Gonzalez-Fernandez; Ernest Arenas; Fj Rodriguez
Background Wnt proteins are a large family of molecules that are critically involved in multiple central nervous system (CNS) developmental processes. Experimental evidences suggest a role for this family of proteins in many CNS disorders, including spinal cord injury (SCI), which is a major neuropathology owing to its high prevalence and chronic sensorimotor functional sequelae. Interestingly, most Wnt proteins and their inhibitors are expressed in the uninjured spinal cord, and their temporal expression patterns are dramatically altered after injury. However, little is known regarding the expression of their better-known receptors, the Frizzled family, after SCI. Thus, the aim of the present study was to evaluate the expression of Frizzled receptors in the damaged spinal cord. Findings Based on the evidence that Wnts are expressed in the spinal cord and are transcriptionally regulated by SCI in adulthood, we analysed the spatio-temporal mRNA and protein expression patterns of Frizzled receptors after contusive SCI using quantitative RT-PCR and single and double immunohistochemistry, respectively. Our results show that almost all of the 10 known Frizzled receptors were expressed in specific spatial patterns in the uninjured spinal cords. Moreover, the Frizzled mRNAs and proteins were expressed after SCI, although their expression patterns were altered during the temporal progression of SCI. Finally, analysis of cellular Frizzled 5 expression pattern by double immunohistochemistry showed that, in the uninjured spinal cord, this receptor was expressed in neurons, oligodendrocytes, astrocytes, microglia and NG2+ glial precursors. After injury, Frizzled 5 was not only still expressed in oligodendrocytes, astrocytes and NG2+ glial precursors but also in axons at all evaluated time points. Moreover, Frizzled 5 was expressed in reactive microglia/macrophages from 3 to 14 days post-injury. Conclusions Our data suggest the involvement of Frizzled receptors in physiological spinal cord function and in the cellular and molecular events that characterise its neuropathology.
Journal of Neurotrauma | 2013
P Gonzalez; Cm Fernandez-Martos; Ernest Arenas; Fj Rodriguez
Wnt proteins play a critical role in central nervous system development and have been implicated in several neuropathologies, including spinal cord injury (SCI). Ryk, an unconventional Wnt receptor, regulates axonal regeneration after SCI, although its expression pattern in this neuropathology remains unclear. Therefore, we sought to define the spatiotemporal and cellular pattern of Ryk expression after a contusive SCI in adult rats using quantitative reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunohistochemical analysis. Under physiological conditions, Ryk is expressed in neurons, astrocytes, and blood vessels, but not in oligodendrocytes, microglia, NG2+ glial precursor cells, or axonal projections. Following SCI, we observed an increase in Ryk mRNA expression from 24 h post-injury until 7 days post-injury, whereas its protein levels were significantly augmented at 7 and 14 days post-injury. Moreover, the spatial and cellular Ryk expression pattern was altered in the damaged tissue, where this receptor was observed in reactive astrocytes and microglia/macrophages, NG2+ glial precursors, fibronectin+ cells, oligodendrocytes, and axons. In conclusion, we demonstrate that Ryk is expressed in the unlesioned spinal cord and that, after SCI, its spatiotemporal and cellular expression pattern changed dramatically, being expressed in cells involved in the spinal cord response to damage.
Journal of Neurochemistry | 2006
Pontus C. Holm; Fj Rodriguez; Julianna Kele; Gonçalo Castelo-Branco; Jan Kitajewski; Ernest Arenas
In the present study, we investigated the involvement of rhombomere 1 patterning proteins in the regulation of the major noradrenergic centre of the brain, the locus coeruleus. Primary cultures of rat embryonic day 13.5 locus coeruleus were treated with fibroblast growth factor‐8, noggin and members of the bone morphogenetic and Wnt protein families. We show that bone morphogenetic proteins 2, 5 and 7 increase and noggin decreases the number of tyrosine hydroxylase‐positive locus coeruleus neurons. Interestingly, from all Wnts expressed in the first rhombomere by embryonic day 12.5 in the mice, we only found expression of wnt5a mRNA in the vicinity of the locus coeruleus. In agreement with this finding, from all Wnts studied in vitro, only Wnt5a increased the number of tyrosine hydroxylase‐positive neurons in locus coeruleus cultures. Finally, we also found that fibroblast growth factor‐8 increased the number of tyrosine hydroxylase‐positive cells in locus coeruleus cultures. Neither of the identified factors affected the survival of tyrosine hydroxylase‐positive locus coeruleus noradrenergic neurons or the proliferation of their progenitors or neurogenesis. Instead, our results suggest that these patterning signals of rhombomere 1 may work to promote the differentiation of noradrenergic progenitors at later stages of development.
Neuroscience Research | 2017
P Gonzalez; Fj Rodriguez
Despite the essential functions of astrocytes and the emerging relevance of the Wnt family of proteins in the CNS under physiological and pathological conditions, the astroglial expression of this family of proteins and its potential modulatory role on astroglial activation is almost unknown. Thus, we have evaluated the expression of all Wnt ligands, receptors and regulators, and the activation state of Wnt-related signaling pathways in non-activated and differentially activated astroglial cultures. We found that numerous Wnt ligands, receptors and regulators were expressed in non-activated astrocytes, while the Wnt-dependent pathways were constitutively active. Moreover, the expression of most detectable Wnt-related molecules and the activity of the Wnt-dependent pathways suffered post-activation variations which frequently depended on the activation system. Finally, the analysis of the effects exerted by Wnt1 and 5a on the astroglial expression of prototypical genes related to astroglial activation showed that both Wnt ligands increased the astroglial expression of interleukin 1β depending on the experimental context, while did not modulate tumor necrosis factor α, interleukin 6, transforming growth factor β1 and glial fibrillary acidic protein expression. These results strongly suggest that the Wnt family of proteins is involved in how astrocytes modulate and respond to the physiological and pathological CNS.
Frontiers in Pharmacology | 2017
Sissi Dolci; Annachiara Pino; Valeria Berton; P Gonzalez; Alice Braga; Marta Fumagalli; Elisabetta Bonfanti; Giorgio Malpeli; Francesca Pari; Stefania Zorzin; Clelia Amoroso; Denny Moscon; Fj Rodriguez; Guido Fumagalli; Francesco Bifari; Ilaria Decimo
Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks). Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.