Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flavia Anna Mercurio is active.

Publication


Featured researches published by Flavia Anna Mercurio.


Biochemistry | 2012

Solution Structure of the First Sam Domain of Odin and Binding Studies with the EphA2 Receptor

Flavia Anna Mercurio; Daniela Marasco; Luciano Pirone; Emilia Pedone; Maurizio Pellecchia; Marilisa Leone

The EphA2 receptor plays key roles in many physiological and pathological events, including cancer. The process of receptor endocytosis and the consequent degradation have attracted attention as possible means of overcoming the negative outcomes of EphA2 in cancer cells and decreasing tumor malignancy. A recent study indicates that Sam (sterile alpha motif) domains of Odin, a member of the ANKS (ankyrin repeat and sterile alpha motif domain-containing) family of proteins, are important for the regulation of EphA2 endocytosis. Odin contains two tandem Sam domains (Odin-Sam1 and -Sam2). Herein, we report on the nuclear magnetic resonance (NMR) solution structure of Odin-Sam1; through a variety of assays (employing NMR, surface plasmon resonance, and isothermal titration calorimetry techniques), we clearly demonstrate that Odin-Sam1 binds to the Sam domain of EphA2 in the low micromolar range. NMR chemical shift perturbation experiments and molecular modeling studies point out that the two Sam domains interact with a head-to-tail topology characteristic of several Sam-Sam complexes. This binding mode is similar to that we have previously proposed for the association between the Sam domains of the lipid phosphatase Ship2 and EphA2. This work further validates structural elements relevant for the heterotypic Sam-Sam interactions of EphA2 and provides novel insights for the design of potential therapeutic compounds that can modulate receptor endocytosis.


Scientific Reports | 2016

Self-assembly of PEGylated tetra-phenylalanine derivatives: structural insights from solution and solid state studies

Carlo Diaferia; Flavia Anna Mercurio; Cinzia Giannini; Teresa Sibillano; Giancarlo Morelli; Marilisa Leone; Antonella Accardo

Water soluble fibers of PEGylated tetra-phenylalanine (F4), chemically modified at the N-terminus with the DOTA chelating agent, have been proposed as innovative contrast agent (CA) in Magnetic Resonance Imaging (MRI) upon complexation of the gadolinium ion. An in-depth structural characterization of PEGylated F4-fibers, in presence (DOTA-L6-F4) and in absence of DOTA (L6-F4), is reported in solution and at the solid state, by a multiplicity of techniques including CD, FTIR, NMR, DLS, WAXS and SAXS. This study aims to better understand how the aggregation process influences the performance of nanostructures as MRI CAs. Critical aggregation concentrations for L6-F4 (43 μM) and DOTA-L6-F4 (75 μM) indicate that self-aggregation process occurs in the same concentration range, independently of the presence of the CA. The driving force for the aggregation is the π-stacking between the side chains of the aromatic framework. CD, FTIR and WAXS measurements indicate an antiparallel β-sheet organization of the monomers in the resulting fibers. Moreover, WAXS and FTIR experiments point out that in solution the nanomaterials retain the same morphology and monomer organizations of the solid state, although the addition of the DOTA chelating agent affects the size and the degree of order of the fibers.


International Journal of Nanomedicine | 2015

Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool

Olga Scudiero; Ersilia Nigro; Marco Cantisani; Irene Colavita; Marilisa Leone; Flavia Anna Mercurio; Massimiliano Galdiero; Antonello Pessi; Aurora Daniele; F. Salvatore; Stefania Galdiero

We have designed a cyclic 17-amino acid β-defensin analog featuring a single disulfide bond. This analog, designated “AMC” (ie, antimicrobial cyclic peptide), combines the internal hydrophobic domain of hBD1 and the C-terminal charged region of hBD3. The novel peptide was synthesized and characterized by nuclear magnetic resonance spectroscopy. The antimicrobial activities against gram-positive and gram-negative bacteria as well as against herpes simplex virus type 1 were analyzed. The cytotoxicity and serum stability were assessed. Nuclear magnetic resonance of AMC in aqueous solution suggests that the structure of the hBD1 region, although not identical, is preserved. Like the parent defensins, AMC is not cytotoxic for CaCo-2 cells. Interestingly, AMC retains the antibacterial activity of the parent hBD1 and hBD3 against Pseudomonas aeruginosa, Enterococcus faecalis, and Escherichia coli, and exerts dose-dependent activity against herpes simplex virus type 1. Moreover, while the antibacterial and antiviral activities of the oxidized and reduced forms of the parent defensins are similar, those of AMC are significantly different, and oxidized AMC is also considerably more stable in human serum. Taken together, our data also suggest that this novel peptide may be added to the arsenal of tools available to combat antibiotic-resistant infectious diseases, particularly because of its potential for encapsulation in a nanomedicine vector.


Organic Letters | 2015

Solid-Phase S-Alkylation Promoted by Molecular Sieves.

Enrica Calce; Marilisa Leone; Flavia Anna Mercurio; Luca Monfregola; Stefania De Luca

A solid-phase S-alkylation procedure to introduce chemical modification on the cysteine sulfhydryl group of a peptidyl resin is reported. The reaction is promoted by activated molecular sieves and consists of a solid-solid process, since both the catalyst and the substrate are in a solid state. The procedure was revealed to be efficient and versatile, particularly when used in combination with the solution S-alkylation approach, allowing for the introduction of different molecular diversities on the same peptide molecule.


Carbohydrate Polymers | 2016

Eco-friendly microwave-assisted protocol to prepare hyaluronan-fatty acid conjugates and to induce their self-assembly process.

Enrica Calce; Flavia Anna Mercurio; Marilisa Leone; Michele Saviano; Stefania De Luca

An environmentally sustainable and energy-efficient synthetic process has been developed to prepare hyaluronan-based nano-sized material. It consists in a microwave-promoted acylation of the hydroxyl function of the polysaccharide with natural fatty acids, performed under solvent-free conditions. The efficient interaction of the solid reagents with the MW radiation accounts for the obtained high yielded products. The self-assembly process of the obtained compounds very fast occurred in an aqueous medium under MW-radiation, thus allowing the development of a green protocol for the nano-particles preparation.


ChemBioChem | 2015

Peptide Fragments of Odin-Sam1: Conformational Analysis and Interaction Studies with EphA2-Sam

Flavia Anna Mercurio; Concetta Di Natale; Luciano Pirone; Pasqualina Liana Scognamiglio; Daniela Marasco; Emilia Pedone; Michele Saviano; Marilisa Leone

Odin is a protein belonging to the ANKS family, and has two tandem Sam domains. The first, Odin‐Sam1, binds to the Sam domain of the EphA2 receptor (EphA2‐Sam); this interaction could be crucial for the regulation of receptor endocytosis and might have an impact on cancer. Odin‐Sam1 associates with EphA2‐Sam by adopting a “mid‐loop/end‐helix” model. In this study three peptide sequences, encompassing the mid‐loop interacting portion of Odin‐Sam1 and its C‐terminal α5 helix, were designed. Their conformational properties were analyzed by CD and NMR. In addition, their abilities to interact with EphA2‐Sam were investigated by SPR studies. The peptides adopt a predominantly disordered state in aqueous buffer, but a higher helical content is evident in the presence of the cosolvent trifluoroethanol. Dissociation constants towards EphA2‐Sam were in the high micromolar range. The structural findings suggest further routes for the design of potential anti‐cancer therapeutics as inhibitors of EphA2‐Sam heterotypic interactions.


Biopolymers | 2014

CD and NMR conformational studies of a peptide encompassing the Mid Loop interface of Ship2–Sam

Flavia Anna Mercurio; Pasqualina Liana Scognamiglio; Concetta Di Natale; Daniela Marasco; Maurizio Pellecchia; Marilisa Leone

The lipid phosphatase Ship2 is a protein that intervenes in several diseases such as diabetes, cancer, neurodegeneration, and atherosclerosis. It is made up of a catalytic domain and several protein docking modules such as a C‐terminal Sam (Sterile alpha motif) domain. The Sam domain of Ship2 (Ship2–Sam) binds to the Sam domains of the EphA2 receptor (EphA2–Sam) and the PI3K effector protein Arap3 (Arap3–Sam). These heterotypic Sam–Sam interactions occur through formation of dimers presenting the canonical “Mid Loop/End Helix” binding mode. The central region of Ship2–Sam, spanning the C‐terminal end of α2, the α3 and α4 helices together with the α2α3 and α3α4 interhelical loops, forms the Mid Loop surface that is needed to bind partners Sam domains. A peptide encompassing most of the Ship2–Sam Mid Loop interface (Shiptide) capable of binding to both EphA2–Sam and Arap3–Sam, was previously identified. Here we investigated the conformational features of this peptide, through solution CD and NMR studies in different conditions. These studies reveal that the peptide is highly flexible in aqueous buffer, while it adopts a helical conformation in presence of 2,2,2‐trifluoroethanol. The discovered structural insights and in particular the identification of a helical motif, may lead to the design of more constrained and possibly cell permeable Shiptide analogs that could work as efficient antagonists of Ship2–Sam heterotypic interactions and embrace therapeutic applications.


Scientific Reports | 2017

Cross-beta nanostructures based on dinaphthylalanine Gd-conjugates loaded with doxorubicin

Carlo Diaferia; Eliana Gianolio; Teresa Sibillano; Flavia Anna Mercurio; Marilisa Leone; Cinzia Giannini; Nicole Balasco; Luigi Vitagliano; Giancarlo Morelli; Antonella Accardo

Very recently we proposed novel di- and tetra-phenylalanine peptides derivatized with gadolinium complexes as potentials supramolecular diagnostic agents for applications in MRI (Magnetic Resonance Imaging). It was observed that in very short FF dipeptide building blocks, the propensity to aggregate decreases significantly after modification with bulky moiety such as Gd-complexes, thus limiting their potential as CAs. We hypothesized that the replacement of the Phe side chain with more extended aromatic groups could improve the self-assembling. Here we describe the synthesis, structural and relaxometric behavior of a novel water soluble self-assembled peptide CA based on 2-naphthylalanine (2Nal). The peptide conjugate Gd-DOTA-L6-(2Nal)2 is able to self-assemble in long fibrillary nanostructures in water solution (up to 1.0 mg/mL). CD and FTIR spectroscopies indicate a β sheet secondary structure with an antiparallel orientation of single strands. All data are in good agreement with WAXS and SAXS characterizations that show the typical “cross-β pattern” for fibrils at the solid state. Molecular modeling indicates the three-dimensional structure of the peptide spine of aggregates is essentially constituted by extended β-sheet motifs stabilized by hydrogen bonds and hydrophobic interactions. The high relaxivity of nanoaggregates (12.3 mM−1 s−1 at 20 MHz) and their capability to encapsulate doxorubicin suggest their potential application as supramolecular theranostic agents.


Biochimie | 2017

Characterization of linear mimetic peptides of Interleukin-22 from dissection of protein interfaces

Sara La Manna; Pasqualina Liana Scognamiglio; Concetta Di Natale; Marilisa Leone; Flavia Anna Mercurio; Anna Maria Malfitano; Francesca Cianfarani; Stefania Madonna; Sergio Caravella; Cristina Albanesi; Ettore Novellino; Daniela Marasco

Interleukin-22 (IL-22) belongs to the family of IL-10 cytokines and is involved in a wide number of human diseases, including inflammatory disorders and cancer pathology. The ligand-receptor complex IL-22/IL-22R plays a key role in several pathways especially in the regulation and resolution of immune responses. The identification of novel compounds able to modulate IL-22/IL-22R complex could open the route to new therapeutic strategies in multiple human diseases. In this study, we designed and characterized IL-22 derived peptides at protein interface regions: several sequences revealed able to interfere with the protein complex with IC50 in the micromolar range as evaluated through Surface Plasmon Resonance (SPR) experiments. Their conformational characterization was carried out through Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopies, shedding new light into the features of IL-22 fragments and on structural determinants of IL-22/IL-22R1 recognition. Finally, several peptides were tested on human keratinocyte cultures for evaluating their ability to mimic the activation of molecular pathways downstream to IL-22R in response to IL-22 binding.


Current Medicinal Chemistry | 2016

The Sam Domain of EphA2 Receptor and its Relevance to Cancer: A Novel Challenge for Drug Discovery?

Flavia Anna Mercurio; Marilisa Leone

BACKGROUND Eph receptors play important functions in developmental processes and diseases and among them EphA2 is well known for its controversial role in cancer. Drug discovery strategies are mainly centered on EphA2 extracellular ligand-binding domain however, the receptor also contains a largely unexplored cytosolic Sam (Sterile alpha motif) domain at the C-terminus. EphA2-Sam binds the Sam domain from the lipid phosphatase Ship2 and the first Sam domain of Odin. Sam-Sam interactions may be important to regulate ligand-induced receptor endocytosis and degradation i.e., processes that could be engaged against tumor malignancy. METHODS We critically analyzed literature related to a) Eph receptors with particular emphasis on EphA2 and its role in cancer, b) Sam domains, c) heterotypic Sam-Sam interactions involving EphA2-Sam. RESULTS While literature data indicate that binding of EphA2-Sam to Ship2-Sam should largely generate pro-oncogenic effects in cancer cells, the correlation between EphA2- Sam/Odin-Sam1 complex and the disease is unclear. Recently a few linear peptides encompassing binding interfaces from either Ship2-Sam and Odin-Sam1 have been characterized but failed to efficiently block heterotypic Sam-Sam interactions involving EphA2-Sam due to the lack of a native like fold. CONCLUSION Molecule antagonists of heterotypic EphA2-Sam associations could work as potential anticancer agents or be implemented as tools to further clarify receptor functions and eventually validate its role as a novel target in the field of anti-cancer drug discovery. Due to the failure of linear peptides there is a crucial need for novel approaches, based on cyclic or helical molecules, to target Sam-Sam interfaces.

Collaboration


Dive into the Flavia Anna Mercurio's collaboration.

Top Co-Authors

Avatar

Marilisa Leone

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Daniela Marasco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Concetta Di Natale

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luciano Pirone

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Emilia Pedone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Michele Saviano

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Antonella Accardo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrica Calce

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge