Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flavia Gasperi is active.

Publication


Featured researches published by Flavia Gasperi.


Environmental Science & Technology | 2012

On quantitative determination of volatile organic compound concentrations using Proton Transfer Reaction Time-of-Flight Mass Spectrometry

Luca Cappellin; Thomas Karl; Michael Probst; Oksana Ismailova; Paul M. Winkler; Christos Soukoulis; Eugenio Aprea; T.D. Märk; Flavia Gasperi; Franco Biasioli

Proton transfer reaction - mass spectrometry (PTR-MS) has become a reference technique in environmental science allowing for VOC monitoring with low detection limits. The recent introduction of time-of-flight mass analyzer (PTR-ToF-MS) opens new horizons in terms of mass resolution, acquisition time, and mass range. A standard procedure to perform quantitative VOC measurements with PTR-ToF-MS is to calibrate the instrument using a standard gas. However, given the number of compounds that can be simultaneously monitored by PTR-ToF-MS, such a procedure could become impractical, especially when standards are not readily available. In the present work we show that, under particular conditions, VOC concentration determinations based only on theoretical predictions yield good accuracy. We investigate a range of humidity and operating conditions and show that theoretical VOC concentration estimations are accurate when the effect of water cluster ions is negligible. We also show that PTR-ToF-MS can successfully be used to estimate reaction rate coefficients between H(3)O(+) and VOC at PTR-MS working conditions and find good agreement with the corresponding nonthermal theoretical predictions. We provide a tabulation of theoretical rate coefficients for a number of relevant volatile organic compounds at various energetic conditions and test the approach in a laboratory study investigating the oxidation of alpha-pinene.


Euphytica | 2005

QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry

Elena Zini; Franco Biasioli; Flavia Gasperi; D. Mott; Eugenio Aprea; T.D. Märk; Andrea Patocchi; Cesare Gessler; M. Komjanc

The availability of genetic linkage maps enables the detection and analysis of QTLs contributing to quality traits of the genotype. Proton Transfer Reaction Mass Spectrometry (PTR-MS), a relatively novel spectrometric technique, has been applied to measure the headspace composition of the Volatile Organic Compounds (VOCs) emitted by apple fruit genotypes of the progeny ‘Fiesta’ × ‘Discovery’. Fruit samples were characterised by their PTR-MS spectra normalised to total area. QTL analysis for all PTR-MS peaks was carried out and 10 genomic regions associated with the peaks at m/z = 28, 43, 57, 61, 103, 115 and 145 were identified (LOD > 2.5). We show that it is possible to find quantitative trait loci (QTLs) related to PTR-MS characterisation of the headspace composition of single whole apple fruits indicating the presence of a link between molecular characterisation and PTR-MS data. We provide tentative information on the metabolites related to the detected QTLs based on available chemical information. A relation between apple skin colour and peaks related to carbonyl compounds was established.


International Journal of Mass Spectrometry | 2003

Fingerprinting mass spectrometry by PTR-MS: heat treatment vs. pressure treatment of red orange juice—a case study

Franco Biasioli; Flavia Gasperi; Eugenio Aprea; L. Colato; Elena Boscaini; T.D. Märk

Abstract Proton transfer reaction mass spectrometry (PTR-MS) is more and more applied to rather different fields of research and applications showing interesting performances where high sensitivity and fast monitoring of volatile organic compounds (VOCs) are required. Based on this technique and aiming at the realisation of an automatic system for routine applications in food science and technology, we tested here a novel approach for fingerprinting mass spectrometric detection and analysis of complex mixtures of VOCs. In particular, we describe and discuss corresponding head space (HS) sampling methods and possible data analysis techniques. As a first test case we studied here the properties of four red orange juices processed by different stabilisation methods starting from the same industrial batch: untreated juice, thermal pasteurised (flash and standard) juice and high pressure stabilised juice. We demonstrate the possibility of a fast automatic discrimination/classification of the samples with the further advantage, compared to the use of electronic noses, of useful information on the mass of the discriminating compounds. Moreover, first comparisons with discriminative analysis by a sensory panel shows evidence that there is a correlation between the ability of the PTR-MS to distinguish different juice samples and that of a panel of trained judges with the obvious advantages of an instrumental approach.


Rapid Communications in Mass Spectrometry | 2010

Proton transfer reaction time‐of‐flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk

Christos Soukoulis; Eugenio Aprea; Franco Biasioli; Luca Cappellin; Erna Schuhfried; T.D. Märk; Flavia Gasperi

We apply, for first time, the recently developed proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) apparatus as a rapid method for the monitoring of lactic acid fermentation (LAF) of milk. PTR-TOF-MS has been proposed as a very fast, highly sensitive and versatile technique but there have been no reports of its application to dynamic biochemical processes with relevance to the food industry. LAF is a biochemical-physicochemical dynamic process particularly relevant for the dairy industry as it is an important step in the production of many dairy products. Further, LAF is important in the utilization of the by-products of the cheese industry, such as whey wastewaters. We show that PTR-TOF-MS is a powerful method for the monitoring of major volatile organic chemicals (VOCs) formed or depleted during LAF, including acetaldehyde, diacetyl, acetoin and 2-propanone, and it also provides information about the evolution of minor VOCs such as acetic acid, 2,3-pentanedione, ethanol, and off-flavor related VOCs such as dimethyl sulfide and furfural. This can be very important considering that the conventional measurement of pH decrease during LAF is often ineffective due to the reduced response of pH electrodes resulting from the formation of protein sediments. Solid-phase microextraction gas chromatography/mass spectrometry (SPME-GC/MS) data on the inoculated milk base and final fermented product are also presented to supporting peak identification. We demonstrate that PTR-TOF-MS can be used as a rapid, efficient and non-invasive method for the monitoring of LAF from headspace, supplying important data about the quality of the final product and that it may be used to monitor the efficacy of manufacturing practices.


Journal of the Science of Food and Agriculture | 2001

The mozzarella cheese flavour profile: a comparison between judge panel analysis and proton transfer reaction mass spectrometry

Flavia Gasperi; Giovanni Gallerani; Andrea Boschetti; Franco Biasioli; Ambrogio Monetti; Elena Boscaini; Alfons Jordan; W. Lindinger; Salvatore Iannotta

Described in this paper is a comparison of results obtained in flavour profiling with two different approaches: classical sensory analysis and a novel instrumental technique. The mozzarella cheese flavour profile of seven different brands has been described by a sensory panel of eight judges. The same brands have been studied by means of proton transfer reaction mass spectrometry (PTR-MS), a novel technique well suited for detecting volatile organic compounds (VOCs) down to the pptv level in air, without any need for sample concentration or trapping. The PTR mass spectra of the headspace of mozzarella samples held at 36 °C have been compared with the judge panel flavour profile. Multivariate statistical data analysis shows that the two methods perform comparable sample discrimination. Even though several questions are still open (definition of better instrumental parameters, improvements in sampling set-up, spectral interpretation), the PTR-MS technique appears to be a very promising method for the instrumental evaluation of the flavour sensory profile of food. This opens up new opportunities both in the control of quality and technological processes as well in the fundamental comprehension of the physiological processes of aroma perception. © 2000 Society of Chemical Industry


Journal of Agricultural and Food Chemistry | 2009

Investigation of Volatile Compounds in Two Raspberry Cultivars by Two Headspace Techniques: Solid-Phase Microextraction/Gas Chromatography−Mass Spectrometry (SPME/GC−MS) and Proton-Transfer Reaction−Mass Spectrometry (PTR−MS)

Eugenio Aprea; Franco Biasioli; Silvia Carlin; Isabella Endrizzi; Flavia Gasperi

The volatile compounds emitted by two raspberry varieties ( Rubus idaeus , cv. Polka and Tulameen) were analyzed, in both the case of fresh fruits and juices, by two headspace methods that are rapid, solvent-free, and with reduced or no sample pretreatment: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS). Multivariate analysis of the SPME/GC-MS results allows for an unambiguous sample discrimination for both mashed fruits and juices. PTR-MS instrumental fingerprint provides, in a faster way, similar qualitative information on the overall flavor profile. The two cultivars show both qualitative and quantitative differences. SPME/GC-MS analysis shows that alcohols and aldehydes are more abundant in the headspace of Tulameen as, e.g., hexanal and hexanol that induce herbaceous odor notes. This observation has been confirmed by sensory analysis. PTR-MS was also used to monitor rapid processes that modify the original aromatic profile, such as lipo-oxigenase activity induced by tissue damages occurring during industrial transformation, accidental mechanical damages, or as a consequence of chewing.


Bioresource Technology | 2012

Monitoring of volatile compound emissions during dry anaerobic digestion of the Organic Fraction of Municipal Solid Waste by Proton Transfer Reaction Time-of-Flight Mass Spectrometry.

Davide Papurello; Christos Soukoulis; Erna Schuhfried; Luca Cappellin; Flavia Gasperi; Silvia Silvestri; Massimo Santarelli; Franco Biasioli

Volatile Organic Compounds (VOCs) formed during anaerobic digestion of aerobically pre-treated Organic Fraction of Municipal Solid Waste (OFMSW), have been monitored over a 30 day period by a direct injection mass spectrometric technique: Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS). Most of the tentatively identified compounds exhibited a double-peaked emission pattern which is probably the combined result from the volatilization or oxidation of the biomass-inherited organic compounds and the microbial degradation of organic substrates. Of the sulfur compounds, hydrogen sulfide had the highest accumulative production. Alkylthiols were the predominant sulfur organic compounds, reaching their maximum levels during the last stage of the process. H(2)S formation seems to be influenced by the metabolic reactions that the sulfur organic compounds undergo, such as a methanogenesis induced mechanism i.e. an amino acid degradation/sulfate reduction. Comparison of different batches indicates that PTR-ToF-MS is a suitable tool providing information for rapid in situ bioprocess monitoring.


Talanta | 2011

Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS)

José Sánchez del Pulgar; Christos Soukoulis; Franco Biasioli; Luca Cappellin; Carmen García; Flavia Gasperi; Pablo M. Granitto; Tilmann D. Märk; Edi Piasentier; Erna Schuhfried

In the present study, the recently developed proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS) technique was used for the rapid characterization of dry cured hams produced according to 4 of the most important Protected Designations of Origin (PDOs): an Iberian one (Dehesa de Extremadura) and three Italian ones (Prosciutto di San Daniele, Prosciutto di Parma and Prosciutto Toscano). In total, the headspace composition and respective concentration for nine Spanish and 37 Italian dry cured ham samples were analyzed by direct injection without any pre-treatment or pre-concentration. Firstly, we show that the rapid PTR-ToF-MS fingerprinting in conjunction with chemometrics (Principal Components Analysis) indicates a good separation of the dry cured ham samples according to their production process and that it is possible to set up, using data mining methods, classification models with a high success rate in cross validation. Secondly, we exploited the higher mass resolution of the new PTR-ToF-MS, as compared with standard quadrupole based versions, for the identification of the exact sum formula of the mass spectrometric peaks providing analytical information on the observed differences. The work indicates that PTR-ToF-MS can be used as a rapid method for the identification of differences among dry cured hams produced following the indications of different PDOs and that it provides information on some of the major volatile compounds and their link with the implemented manufacturing practices such as rearing system, salting and curing process, manufacturing practices that seem to strongly affect the final volatile organic profile and thus the perceived quality of dry cured ham.


Rapid Communications in Mass Spectrometry | 2011

Extending the dynamic range of proton transfer reaction time‐of‐flight mass spectrometers by a novel dead time correction

Luca Cappellin; Franco Biasioli; Erna Schuhfried; Christos Soukoulis; T.D. Märk; Flavia Gasperi

Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) allows for very fast simultaneous monitoring of volatile organic compounds (VOCs) in complex environments. In several applications, food science and food technology in particular, peaks with very different intensities are present in a single spectrum. For VOCs, the concentrations range from the sub-ppt all the way up to the ppm level. Thus, a large dynamic range is necessary. In particular, high intensity peaks are a problem because for them the linear dependency of the detector signal on VOC concentration is distorted. In this paper we present, test with real data, and discuss a novel method which extends the linearity of PTR-TOF-MS for high intensity peaks far beyond the limit allowed by the usual analytical correction methods such as the so-called Poisson correction. Usually, raw data can be used directly without corrections with an intensity of up to about 0.1 ions/pulse, and the Poisson correction allows the use of peaks with intensities of a few ions/pulse. Our method further extends the linear range by at least one order of magnitude. Although this work originated from the necessity to extend the dynamic range of PTR-TOF-MS instruments in agro-industrial applications, it is by no means limited to this area, and can be implemented wherever dead time corrections are an issue.


Metabolomics | 2012

PTR-ToF-MS and data mining methods: a new tool for fruit metabolomics

Luca Cappellin; Christos Soukoulis; Eugenio Aprea; Pablo M. Granitto; Nicola Dallabetta; Fabrizio Costa; Roberto Viola; T.D. Märk; Flavia Gasperi; Franco Biasioli

Proton Transfer Reaction-Mass Spectrometry (PTR-MS) in its recently developed implementation based on a time-of-flight mass spectrometer (PTR-ToF-MS) has been evaluated as a possible tool for rapid non-destructive investigation of the volatile compounds present in the metabolome of apple cultivars and clones. Clone characterization is a cutting-edge problem in technical management and royalty application, not only for apple, aiming at unveiling real properties which differentiate the mutated individuals. We show that PTR-ToF-MS coupled with multivariate and data mining methods may successfully be employed to obtain accurate varietal and clonal apple fingerprint. In particular, we studied the VOC emission profile of five different clones belonging to three well known apple cultivars, such as ‘Fuji’, ‘Golden Delicious’ and ‘Gala’. In all three cases it was possible to set classification models which can distinguish all cultivars and some of the clones considered in this study. Furthermore, in the case of ‘Gala’ we also identified estragole and hexyl 2-methyl butanoate contributing to such clone characterization. Beside its applied relevance, no data on the volatile profiling of apple clones are available so far, our study indicates the general viability of a metabolomic approach for volatile compounds in fruit based on rapid PTR-ToF-MS fingerprinting.

Collaboration


Dive into the Flavia Gasperi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T.D. Märk

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar

Christos Soukoulis

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathilde Charles

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pablo M. Granitto

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge