Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flavia Girolami is active.

Publication


Featured researches published by Flavia Girolami.


Nature | 2005

The MET oncogene drives a genetic programme linking cancer to haemostasis

Carla Boccaccio; Gabriella Sabatino; Enzo Medico; Flavia Girolami; Antonia Follenzi; Gigliola Reato; Antonino Sottile; Luigi Naldini; Paolo M. Comoglio

The close relationship between activation of blood coagulation and cancer is an old enigma. In 1865, migrans trombophlebitis (‘a condition of the blood that predisposes it to spontaneous coagulation’) was described as a forewarning of occult malignancy (Trousseaus sign). This pioneering observation emphasized the existence of haemostasis disorders associated with cancer onset; this phenomenon has since been extensively reported in clinical and epidemiological studies, but has so far resisted a mechanistic explanation. Here we report a mouse model of sporadic tumorigenesis based on genetic manipulation of somatic cells. Targeting the activated, human MET oncogene to adult liver caused slowly progressing hepatocarcinogenesis. This was preceded and accompanied by a syndrome manifesting first with blood hypercoagulation (venous thromboses), and then evolving towards fatal internal haemorrhages. The pathogenesis of this syndrome is driven by the transcriptional response to the oncogene, including prominent upregulation of plasminogen activator inhibitor type 1 (PAI-1) and cyclooxygenase-2 (COX-2) genes. In vivo analysis showed that both proteins support the thrombohaemorrhagic phenotype, thus providing direct genetic evidence for the long-sought-after link between oncogene activation and haemostasis.


Clinical Cancer Research | 2010

Inhibition of Src Impairs the Growth of Met-Addicted Gastric Tumors

Andrea Bertotti; Cecilia Bracco; Flavia Girolami; Davide Torti; Stefania Gastaldi; Francesco Galimi; Enzo Medico; Paul Elvin; Paolo M. Comoglio; Livio Trusolino

Purpose: We examined whether inhibition of Src tyrosine kinase, a downstream effector of the MET oncogene, can hinder the malignant properties of gastric tumors dependent on Met for growth and survival. Experimental Design: Sensitivity to Src inhibition was determined in vitro by measuring clonogenic survival (anchorage-independent growth) and in vivo by establishing xenograft models. Four “Met-addicted” gastric carcinoma cell lines (GTL16, MKN45, HS746T, and SNU5) and three Met-independent gastric carcinoma cell lines (KATO III, AGS, and NCI-N87) were treated with the Src inhibitor saracatinib (AZD0530). In GTL16 and KATO III, Src neutralization was also achieved by dasatinib and RNA interference. The biochemical and transcriptional consequences of Src inhibition were explored using anti-phosphoprotein antibodies and oligonucleotide microarrays. Results: Inhibition of Src in Met-addicted gastric carcinoma cell lines (a) decreased the phosphorylation/activation levels of signaling intermediates involved in cell proliferation and protection from apoptosis and down-modulated the expression of several cell cycle regulators; (b) reduced anchorage-independent growth; (c) enhanced impairment of cell viability produced by Met inhibition; and (d) delayed tumorigenesis in xenotransplantation models. Immunohistochemical analysis of tumor xenograft tissues following systemic treatment with saracatinib showed a reduction of tumor cell proliferation index, increased apoptosis, and diminished phospho-focal adhesion kinase and phospho-paxillin staining. Tumor stroma parameters such as angiogenesis or inflammatory infiltration were unaffected. In clonogenic survival assays, gastric carcinoma cells without addiction to Met were less sensitive than Met-addicted cells to Src inhibition. Conclusions: Src is as a key downstream transducer of Met-driven tumor growth. Targeting Src might provide therapeutic benefit in Met-addicted tumors. Clin Cancer Res; 16(15); 3933–43. ©2010 AACR.


Veterinary Journal | 2011

Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes.

Veronica Spalenza; Flavia Girolami; Claudia Bevilacqua; Fulvio Riondato; Roberto Rasero; Carlo Nebbia; Paola Sacchi; Patrice Martin

Gene expression studies in blood cells, particularly lymphocytes, are useful for monitoring potential exposure to toxicants or environmental pollutants in humans and livestock species. Quantitative PCR is the method of choice for obtaining accurate quantification of mRNA transcripts although variations in the amount of starting material, enzymatic efficiency, and the presence of inhibitors can lead to evaluation errors. As a result, normalization of data is of crucial importance. The most common approach is the use of endogenous reference genes as an internal control, whose expression should ideally not vary among individuals and under different experimental conditions. The accurate selection of reference genes is therefore an important step in interpreting quantitative PCR studies. Since no systematic investigation in bovine lymphocytes has been performed, the aim of the present study was to assess the expression stability of seven candidate reference genes in circulating lymphocytes collected from 15 dairy cows. Following the characterization by flow cytometric analysis of the cell populations obtained from blood through a density gradient procedure, three popular softwares were used to evaluate the gene expression data. The results showed that two genes are sufficient for normalization of quantitative PCR studies in cattle lymphocytes and that YWAHZ, S24 and PPIA are the most stable genes.


Journal of Agricultural and Food Chemistry | 2009

Study of dexamethasone urinary excretion profile in cattle by LC-MS/MS: comparison between therapeutic and growth-promoting administration.

Marco Vincenti; Flavia Girolami; Pierluigi Capra; Marco Pazzi; M. Carletti; Giulia Gardini; Carlo Nebbia

Dexamethasone is a potent synthetic corticosteroid widely employed as a therapeutic agent in cattle. Besides this legal use, corticosteroids are also administered at low dosages as growth-promoters either alone or in combination with other steroids or with beta-agonists. For this reason, appropriate control plans are established to survey corticosteroid misuse, using liver or urine as biological matrices. Since few data are available about the kinetics of dexamethasone excretion in meat cattle, an experimental study was designed to assess the drug residue levels in urines following either a therapeutic (60 microg of dexamethasone sodium phosphate/kg b.w., for three consecutive days) or a growth-promoting schedule (0.7 or 1.4 mg of dexamethasone sodium phosphate per capita/day for 60 days). The urinary elimination of dexamethasone, which was predominantly excreted in the unmodified form, was determined by high-performance liquid chromatography/tandem mass spectrometry at different time intervals, i.e. during the treatments and after appropriate withdrawal times. Our findings confirm the high and rapid rate of dexamethasone urinary excretion irrespective of the nature of the treatment, and provide useful reference values that can be conveniently employed for forensic purposes.


Toxicology Letters | 2008

Time-dependent acetylsalicylic acid effects on liver CYP1A and antioxidant enzymes in a rat model of 7,12-dimethylbenzanthracene (DMBA)-induced mammary carcinogenesis

Flavia Girolami; Giuliana Abbadessa; Silvia Racca; Angela Spaccamiglio; Francesca Piccione; Mauro Dacasto; M. Carletti; Giulia Gardini; Francesco Di Carlo; Carlo Nebbia

7,12-Dimethylbenzanthracene (DMBA) is an abundant environmental contaminant, which undergoes bioactivation, primarily by the CYP1 family, both in liver and extra-hepatic tissues. Dietary acetylsalicylic acid (ASA) has been recently reported to inhibit DMBA-mediated mammary tumour formation in rats. Chemopreventive substances may reduce the risk of developing cancer by decreasing metabolic enzymes responsible for generating reactive species (phase I enzymes) and/or increasing phase II enzymes that can deactivate radicals and electrophiles. To test these hypotheses, Sprague-Dawley female rats were orally administered ASA as lysine acetylsalicylate (50 mg per capita/day for 21 days in water), DMBA (10 mg per capita in olive oil on day 7, 14, and 21), ASA and DMBA in combination, and vehicles only, respectively. Six rats for each group were sacrificed on day 8, 15, and 22. The DMBA-mediated increase in hepatic CYP1A expression and related activities was not significantly affected by ASA, which, conversely, enhanced in a time-dependent manner the liver reduced glutathione content (up to 52%) and the activity of NAD(P)H-quinone oxidoreductase (up to 34%) in DMBA-treated rats. It is proposed that the positive modulation of the hepatic antioxidant systems by ASA may play a role in the chemoprevention of mammary tumourigenesis induced by DMBA in the female rat.


BMC Veterinary Research | 2014

Profile of the urinary excretion of prednisolone and its metabolites in finishing bulls and cows treated with a therapeutic schedule

Carlo Nebbia; Pierluigi Capra; Marta Leporati; Flavia Girolami; Gandolfo Barbarino; Stefano Gatto; Marco Vincenti

BackgroundPrednisolone was one of the first glucocorticoids to be synthesised, but it is still widely applied to cattle. Illegal uses of prednisolone include its uses for masking a number of diseases before animal sale and, at lower dosages for extended periods of time, for the improvement of feed efficiency and carcass characteristics. Since occasional presence of prednisolone has been detected at trace level in urine samples from untreated cattle, the Italian Ministry of Health introduced a provisional limit of 5 ng/mL to avoid false non-compliances. However, this limit proved ineffective in disclosing prednisolone misuse as a growth-promoter. In the present study, prednisolone acetate was administered to finishing bulls and cows according to a therapeutic protocol (2 × 0.4-0.5 mg/kg bw i.m. at 48 h interval) to further verify the practical impact of this cut-off limit and develop sound strategies to distinguish between exogenous administration and endogenous production. Urinary prednisolone, prednisone, 20β-dihydroprednisolone, 20β-dihydroprednisolone, 20β-dihydroprednisone, 6β-hydroxyprednisolone, cortisol, and cortisone were determined using a validated LC/MS-MS method.ResultsThe urinary excretion profile showed the simultaneous presence of prednisolone, 20β-dihydroprednisolone, and prednisone, the latter at lower concentrations, up to 33 days after the first dosing. Higher analyte levels were detected in bulls even after correction for dilution in the urine. Prednisolone concentrations below 5 ng/ml were determined in half of the samples collected at 19 days, and in all the samples obtained 26 and 33 days after the first administration. No measurable concentrations of prednisolone or its metabolites were found in the samples collected before the treatment, while cortisol and cortisone levels lower than the respective LOQs were observed upon treatment.ConclusionsThe present study confirms the criticism of the coarse quantitative approach currently adopted to ascertain illegal prednisolone administration in cattle. As previously shown for growth-promoting treatments of meat cattle, the simultaneous determination of urinary prednisolone, prednisone, 20β-dihydroprednisolone, along with cortisol and cortisone, may represent a more reliable approach to confirm the exogenous origin of prednisolone. Such a strategy would facilitate unequivocal detection of animals treated with prednisolone acetate using a therapeutical protocol, even 3 to 4 weeks after the treatment.


Science of The Total Environment | 2016

Comparative liver accumulation of dioxin-like compounds in sheep and cattle: Possible role of AhR-mediated xenobiotic metabolizing enzymes.

Flavia Girolami; Veronica Spalenza; A. Benedetto; L. Manzini; P. Badino; M.C. Abete; Carlo Nebbia

PCDDs, PCDFs, and PCBs are persistent organic pollutants (POPs) that accumulate in animal products and may pose serious health problems. Those able to bind the aryl hydrocarbon receptor (AhR), eliciting a plethora of toxic responses, are defined dioxin-like (DL) compounds, while the remainders are called non-DL (NDL). An EFSA opinion has highlighted the tendency of ovine liver to specifically accumulate DL-compounds to a greater extent than any other farmed ruminant species. To examine the possible role in such an accumulation of xenobiotic metabolizing enzymes (XME) involved in DL-compound biotransformation, liver samples were collected from ewes and cows reared in an area known for low dioxin contamination. A related paper reported that sheep livers had about 5-fold higher DL-compound concentrations than cattle livers, while the content of the six marker NDL-PCBs did not differ between species. Specimens from the same animals were subjected to gene expression analysis for AhR, AhR nuclear translocator (ARNT) and AhR-dependent oxidative and conjugative pathways; XME protein expression and activities were also investigated. Both AhR and ARNT mRNA levels were about 2-fold lower in ovine samples and the same occurred for CYP1A1 and CYP1A2, being approximately 3- and 9-fold less expressed in sheep compared to cattle, while CYP1B1 could be detectable in cattle only. The results of the immunoblotting and catalytic activity (most notably EROD) measurements of the CYP1A family enzymes were in line with the gene expression data. By contrast, phase II enzyme expression and activities in sheep were higher (UGT1A) or similar (GSTA1, NQO1) to those recorded in cattle. The overall low expression of CYP1 family enzymes in the sheep is in line with the observed liver accumulation of DL-compounds and is expected to affect the kinetics and the dynamics of other POPs such as many polycyclic aromatic hydrocarbons, as well as of toxins (e.g. aflatoxins) or drugs (e.g. benzimidazole anthelmintics) known to be metabolized by those enzymes.


Toxicology Letters | 2011

Gene expression and inducibility of the aryl hydrocarbon receptor-dependent pathway in cultured bovine blood lymphocytes.

Flavia Girolami; Veronica Spalenza; M. Carletti; Giovanni Perona; Paola Sacchi; Roberto Rasero; Carlo Nebbia

The exposure to dioxin-like (DL) compounds, an important class of persistent environmental pollutants, results in the altered expression of target genes. This occurs through the binding to the aryl hydrocarbon receptor (AhR), the subsequent dimerization with the AhR nuclear translocator (ARNT), and the binding of the complex to DNA responsive elements. A number of genes are up-regulated, including, among others, the AhR repressor (AHRR) and several biotransformation enzymes, such as the members of CYP1 family and NAD(P)H-quinone oxidoreductase (NOQ1). The expression and the inducibility of the above genes were investigated in mitogen-stimulated cultured blood lymphocytes from cattle, which represent a notable source of DL-compound human exposure through dairy products and meat. As assessed by real-time PCR, all the examined genes except CYP1A2 and NQO1 were detected under basal conditions. Cell exposure to the DL-compounds PCB126 or PCB77 in the 10(-6)-10(-9)M concentration range resulted in a 2-4-fold induction of CYPIA1 and CYP1B1, which was antagonized by α-naphthoflavone or PCB153. This study demonstrates for the first time the presence and inducibility of the AhR pathway in easily accessible cells like bovine peripheral lymphocytes and prompts further investigations to verify whether similar changes could occur under in vivo conditions.


Science of The Total Environment | 2013

Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area

Flavia Girolami; Veronica Spalenza; M. Carletti; Paola Sacchi; Roberto Rasero; Carlo Nebbia

Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes.


Toxicology Letters | 2015

Constitutive expression of the AHR signaling pathway in a bovine mammary epithelial cell line and modulation by dioxin-like PCB and other AHR ligands

Flavia Girolami; Veronica Spalenza; Livio Manzini; M. Carletti; Carlo Nebbia

Environmental pollutants, such as dioxin-like (DL) PCBs, benzo(a) pyrene (B[a]P), and flavonoids are aryl hydrocarbon receptor (AHR) ligands and may be excreted in dairy milk. The expression of AHR-target genes, particularly those involved in xenobiotic biotransformation, and their modulation by two DL-PCBs, B[a]P, and β-naphthoflavone was investigated in a bovine mammary epithelial cell line (BME-UV). As assessed by quantitative PCR, BME-UV cells expressed a functional AHR signaling pathway. All the AHR ligands induced a concentration-related increase in the transcription of cytochrome P450 1A1 and 1B1, known to be implicated in the bioactivation of several xenobiotics. Conversely, genes encoding for antioxidant and detoxifying enzymes, like quinone oxidoreductase or glutathione S-transferase A2, were not affected or even depressed. This study demonstrates the occurrence and the modulation by different AHR-ligands of genes involved in xenobiotic metabolism in BME-UV cells, with the potential generation of (re) active metabolites that may damage mammary tissue and/or affect animal or human health via the contaminated milk.

Collaboration


Dive into the Flavia Girolami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge