Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flavia Saravia is active.

Publication


Featured researches published by Flavia Saravia.


European Journal of Neuroscience | 2006

Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin‐induced diabetic mice: reversion by antidepressant treatment

Juan Beauquis; Paulina Roig; Françoise Homo-Delarche; Alejandro F. De Nicola; Flavia Saravia

Cerebral dysfunctions, including a high incidence of depression, are common findings in human type 1 diabetes mellitus. An association between depression and defective hippocampal neurogenesis has been proposed and, in rodents, antidepressant therapy restores neuronal proliferation in the dentate gyrus. Hippocampal neurogenesis is also deficient in diabetic mice, which led us to study whether the selective serotonin reuptake inhibitor fluoxetine influences cell proliferation in streptozotocin‐diabetic animals. Diabetic and control C57BL/6 mice received fluoxetine (10 mg/kg/day, i.p., 10 days) and dentate gyrus cell proliferation was measured after a single injection of 5‐bromo‐2′‐deoxyuridine (BrdU). Diabetic mice showed reduced cell proliferation. Fluoxetine treatment, although having no effect in controls, corrected this parameter in diabetic mice. The phenotype of newly generated cells was analysed by confocal microscopy after seven daily BrdU injections, using Tuj‐1/β‐III tubulin as a marker for immature neurones and glial fibrillary acidic protein for astrocytes. In controls, the proportion of Tuj‐1‐BrdU‐positive cells over total BrdU cells was ∼70%. In vehicle‐treated diabetic mice, immature neurones decreased to 56% and fluoxetine brought this proportion back to control values without affecting astrocytes. Therefore, fluoxetine preferentially increased the proliferation of cells with a neuronal phenotype. In addition, neurones were counted in the hilus of the dentate gyrus; a 30% decrease was found in diabetic mice compared with controls, whereas this neuronal loss was prevented by fluoxetine. In conclusion, fluoxetine treatment restored neuroplasticity‐related hippocampal alterations of diabetic mice. These findings may be potentially important to counteract diabetes‐associated depression in humans.


Neuropsychopharmacology | 2009

Glucocorticoid receptor blockade normalizes hippocampal alterations and cognitive impairment in streptozotocin-induced type 1 diabetes mice.

Yanina Revsin; Niels V Rekers; Mieke C Louwe; Flavia Saravia; Alejandro F. De Nicola; E. Ron de Kloet; Melly S. Oitzl

Type 1 diabetes is a common metabolic disorder accompanied by an increased secretion of glucocorticoids and cognitive deficits. Chronic excess of glucocorticoids per se can evoke similar neuropathological signals linked to its major target in the brain, the hippocampus. This deleterious action exerted by excess adrenal stress hormone is mediated by glucocorticoid receptors (GRs). The aim of the present study was to assess whether excessive stimulation of GR is causal to compromised neuronal viability and cognitive performance associated with the hippocampal function of the diabetic mice. For this purpose, mice had type 1 diabetes induced by streptozotocin (STZ) administration (170 mg/kg, i.p.). After 11 days, these STZ-diabetic mice showed increased glucocorticoid secretion and hippocampal alterations characterized by: (1) increased glial fibrillary acidic protein-positive astrocytes as a marker reacting to neurodegeneration, (2) increased c-Jun expression marking neuronal activation, (3) reduced Ki-67 immunostaining indicating decreased cell proliferation. At the same time, mild cognitive deficits became obvious in the novel object-placement recognition task. After 6 days of diabetes the GR antagonist mifepristone (RU486) was administered twice daily for 4 days (200 mg/kg, p.o.). Blockade of GR during early type 1 diabetes attenuated the morphological signs of hippocampal aberrations and rescued the diabetic mice from the cognitive deficits. We conclude that hippocampal disruption and cognitive impairment at the early stage of diabetes are caused by excessive GR activation due to hypercorticism. These signs of neurodegeneration can be prevented and/or reversed by GR blockade with mifepristone.


Brain Research | 2002

Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice

Flavia Saravia; Yanina Revsin; Maria Claudia Gonzalez Deniselle; Susana González; Paulina Roig; Analia Lima; Françoise Homo-Delarche; Alejandro F. De Nicola

Diabetes can be associated with cerebral dysfunction in humans and animal models of the disease. Moreover, brain anomalies and alterations of the neuroendocrine system are present in type 1 diabetes (T1D) animals, such as the spontaneous nonobese diabetic (NOD) mouse model and/or the pharmacological streptozotocin (STZ)-induced model. Because of the prevalent role of astrocytes in cerebral glucose metabolism and their intimate connection with neurones, we investigated hippocampal astrocyte alterations in prediabetic and diabetic NOD mice and STZ-treated diabetic mice. The number and cell area related to the glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes were quantified in the stratum radiatum region of the hippocampus by computerized image analysis in prediabetic (2, 4 and 8 weeks of age) and diabetic (16-week-old) NOD female mice, age and sex-matched lymphocyte-deficient NODscid and C57BL/6 control mice and, finally, STZ-induced diabetic and vehicle-treated nondiabetic 16-week-old C57BL/6 female mice. Astrocyte number was higher early in life in prediabetic NOD and NODscid mice than in controls, when transient hyperinsulinemia and low glycemia were found in these strains. The number and cell area of GFAP(+) cells further increased after the onset of diabetes in NOD mice. Similarly, in STZ-treated diabetic mice, the number of GFAP(+) cells and cell area were higher than in vehicle-treated mice. In conclusion, astrocyte changes present in genetic and pharmacological models of T1D appear to reflect an adaptive process to alterations of glucose homeostasis.


Brain Research | 2005

Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes

Yanina Revsin; Flavia Saravia; Paulina Roig; Analia Lima; E. Ronald de Kloet; Françoise Homo-Delarche; Alejandro F. De Nicola

The influence of diabetes mellitus on brain pathology is increasingly recognized. Previous contributions of our laboratory demonstrated in models of type 1 diabetes (nonobese diabetic and streptozotocin (STZ)-treated mice), a marked astrogliosis and neurogenesis deficit in hippocampus and increased expression of hypothalamic neuropeptides. In the present investigation, we further analyzed alterations of astroglia and neurons in the hippocampus of mice 1 month after STZ-induced diabetes. Results showed that these STZ-diabetic mice presented: (a) increased number of astrocytes positive for apolipoprotein-E (Apo-E), a marker of ongoing neuronal dysfunction; (b) abnormal expression of early gene products associated with neuronal activation, including a high number of Jun + neurons in CA1 and CA3 layers and dentate gyrus, and of Fos-expressing neurons in CA3 layer; (c) augmented activity of NADPH-diaphorase, linked to oxidative stress, in CA3 region. These data support the concept that uncontrolled diabetes leads to hippocampal pathology, which adjoin to changes in other brain structures such as hypothalamus and cerebral cortex.


Journal of Neuroendocrinology | 2004

Oestradiol restores cell proliferation in dentate gyrus and subventricular zone of streptozotocin-diabetic mice.

Flavia Saravia; Yanina Revsin; Victoria Lux-Lantos; Juan Beauquis; Françoise Homo-Delarche; A. F. De Nicola

Type 1 diabetes mellitus correlates with several brain disturbances, including hypersensitivity to stress, cognitive impairment, increased risk of stroke and dementia. Within the central nervous system, the hippocampus is considered a special target for alterations associated with diabetes. Neurogenesis is a plastic event restricted to few adult brain areas: the subgranular zone of the dentate gyrus and the subventricular zone (SVZ). First, we studied the ability for neurogenesis in the dentate gyrus and SVZ of chronic diabetic mice induced by streptozotocin (STZ). Using bromodeoxyuridine (BrdU) labelling of cells in the S‐phase, we observed a strong reduction in cell proliferation rate in both brain regions of diabetic mice killed 20 days after STZ administration. Second, because oestrogens are active neuroprotective agents, we investigated whether 17β‐oestradiol (200 µg pellet implant in cholesterol during 10 days) restored brain cell proliferation in the diabetic mouse brain. Our results demonstrated a complete reversibility of dentate gyrus cell proliferation in oestrogen‐treated diabetic mice. This plasticity change was not exclusive to the hippocampus because oestrogen treatment restored BrdU incorporation into newborn cells of the SVZ region of diabetic animals. Oestrogen treatment did not alter the hyperglycemic status of STZ‐diabetic mice. Moreover, oestrogen did not modify BrdU incorporation in control animals. These data show that oestrogen treatment strongly stimulates brain neurogenesis of diabetic mice and open up new venues for understanding the potential neuroprotective role of steroid hormones in diabetic encephalopathy.


Experimental Neurology | 2013

Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer's disease

Juan Beauquis; Patricio Pavía; Carlos Pomilio; Angeles Vinuesa; Natalia Podlutskaya; Veronica Galvan; Flavia Saravia

Alzheimers disease (AD) is a neurodegenerative disease that affects neurons and glial cells and leads to dementia. Growing evidence shows that glial changes may precede neuronal alterations and behavioral impairment in the progression of the disease. The modulation of these changes could be addressed as a potential therapeutic strategy. Environmental enrichment has been classically associated to effects on neuronal morphology and function but less attention has been paid to the modulation of glia. We thus characterized astroglial changes in the hippocampus of adult PDAPP-J20 transgenic mice, a model of AD, exposed for 3 months to an enriched environment, from 5 to 8 months of age. Using confocal microscopy, three-dimensional reconstruction and Sholl analysis, we evaluated the morphology of two distinct populations of astrocytes: those associated to amyloid β plaques and those that were not. We found that plaque-associated astrocytes in PDAPP-J20 mice had an increased volume and process ramification than control astrocytes. Non-plaque-associated astrocytes showed a decrease in volume and an increase in the ramification of GFAP+ processes as compared with control astrocytes. Environmental enrichment prevented these alterations and promoted a cellular morphology similar to that found in control mice. Morphological changes in non-plaque-associated astrocytes were found also at 5 months of age, before amyloid β deposition in the hippocampus. These results suggest that glial alterations have an early onset in AD pathogenesis and that the exposure to an enriched environment is an appropriate strategy to reverse them. Cellular and molecular pathways involved in this regulation could constitute potential novel therapeutic targets.


PLOS ONE | 2010

Short-Term Environmental Enrichment Enhances Adult Neurogenesis, Vascular Network and Dendritic Complexity in the Hippocampus of Type 1 Diabetic Mice

Juan Beauquis; Paulina Roig; Alejandro F. De Nicola; Flavia Saravia

Background Several brain disturbances have been described in association to type 1 diabetes in humans. In animal models, hippocampal pathological changes were reported together with cognitive deficits. The exposure to a variety of environmental stimuli during a certain period of time is able to prevent brain alterations and to improve learning and memory in conditions like stress, aging and neurodegenerative processes. Methodology/Principal Findings We explored the modulation of hippocampal alterations in streptozotocin-induced type 1 diabetic mice by environmental enrichment. In diabetic mice housed in standard conditions we found a reduction of adult neurogenesis in the dentate gyrus, decreased dendritic complexity in CA1 neurons and a smaller vascular fractional area in the dentate gyrus, compared with control animals in the same housing condition. A short exposure -10 days- to an enriched environment was able to enhance proliferation, survival and dendritic arborization of newborn neurons, to recover dendritic tree length and spine density of pyramidal CA1 neurons and to increase the vascular network of the dentate gyrus in diabetic animals. Conclusions/Significance The environmental complexity seems to constitute a strong stimulator competent to rescue the diabetic brain from neurodegenerative progression.


Cellular and Molecular Neurobiology | 2006

Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment.

Flavia Saravia; Juan Beauquis; Yanina Revsin; Françoise Homo-Delarche; E. Ronald de Kloet; Alejandro F. De Nicola

1. A recently recognized complication of uncontrolled diabetes mellitus is the encephalopathy involving, among other regions, the hippocampus. Since estrogens bring neuroprotection in cases of brain injury and degenerative diseases, we have studied if estradiol (E2) administration counteracts some hippocampal abnormalities of streptozotocin (STZ)-diabetic adult mice.2. We first report the ability of E2 to modulate neurogenesis in the dentate gyrus (DG) and subventricular zone (SVZ) of diabetic mice. Using bromodeoxyuridine (BrdU) to label newly generated cells, a strong reduction in cell proliferation was obtained in DG and SVZ of mice sacrificed 20 days after STZ administration. The reduction was completely relieved by 10 days of E2 pellet implantation, which increased 30-fold the circulating E2 levels.3. Diabetic mice also showed abnormal expression of astrocyte markers in hippocampus. Thus, increased number of GFAP+ cells, indicative of astrogliosis, and increased number of apolipoprotein-E (Apo-E)+ astrocytes, a marker of ongoing neuronal dysfunction, was found in stratum radiatum below the CA1 hippocampal subfield of diabetic mice. Both parameters were reverted to normal by the E2 regime that upregulated cell proliferation.4. The studies demonstrated that hippocampal neuropathology of uncontrolled diabetes is a reversible condition and sensitive to estrogen treatment. Studies in animal models may open up new venues for understanding the beneficial role of steroid hormones in diabetic encephalopathy.


Experimental Neurology | 2008

Prominently decreased hippocampal neurogenesis in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse

J. Beauquis; Flavia Saravia; J. Coulaud; P. Roig; M. Dardenne; Françoise Homo-Delarche; Alejandro F. De Nicola

In human diabetes, degenerative and functional disorders of the central nervous system, including depression, are common findings. Defective dentate gyrus (DG) neurogenesis is associated with affective-related disorders and depression. We previously demonstrated reduced DG neurogenesis in a pharmacological type 1 diabetes model, the streptozotocin (STZ)-treated mouse. Here, we explored DG neurogenesis in a spontaneous T1D model, the nonobese diabetic (NOD) mouse, at prediabetic and diabetic stages. Cell proliferation was assessed in the DG of 5, 8 and 12-week-old control C57BL/6 and BALB/c strains and NOD mice, killed 2 h after bromodeoxyuridine (BrdU) administration. Survival of the newly generated cells was studied in 15-week-old animals that were killed 21 days after BrdU injection. The number of proliferative BrdU-positive cells in the DG was, regardless of age, constantly and significantly lower in NOD than in control strains, showing the presence of hippocampal alterations far before clinical diabetes onset in NOD mice. Diabetes also strongly decreased cell survival in NOD DG. However, cell phenotype proportion, as assessed by co-localization with neuronal or glial markers and confocal microscopy, was not modified. Hippocampal neurogenesis is strongly diminished in the spontaneous NOD model, like in the STZ model. Notably, NOD hippocampal DG cell proliferation defect takes place during the prediabetic stage. Whether this early alteration might result, in this autoimmune strain, from hypothalamo-pituitary adrenal axis alterations and/or ongoing brain inflammatory process sharing many characteristics of aging is discussed and deserves further investigation.


Hippocampus | 2014

Neuronal and Glial Alterations, Increased Anxiety, and Cognitive Impairment Before Hippocampal Amyloid Deposition in PDAPP Mice, Model of Alzheimer's Disease

Juan Beauquis; Angeles Vinuesa; Carlos Pomilio; Patricio Pavía; Veronica Galvan; Flavia Saravia

In the context of Alzheimers disease (AD), hippocampal alterations have been well described in advanced stages of the pathology, when amyloid deposition, inflammation and glial activation occur, but less attention has been directed to studying early brain and behavioral changes. Using an animal model of AD, the transgenic PDAPP‐J20 mouse at 5 months of age, when no amyloid plaques are present and low cerebral levels of amyloid peptides are detectable, we found structural, morphological, and cellular alterations in the hippocampus. Young transgenic mice showed a reduced hippocampal volume with less number of pyramidal and granular neurons, which additionally exhibited cell atrophy. The neurogenic capability in this zone, measured as DCX+ cells, was strongly diminished and associated to alterations in cell maturity. A decrease in presynaptic synaptophysin optical density was detected in mossy fibers reaching CA3 subfield but not in Golgi stained‐ CA1 dendritic spine density. Employing confocal microscopy and accurate stereological tools we also found a reduction in the number of GFAP+ cells, along with decreased astrocyte complexity, suggesting a potential detriment of neural support. According with untimely neuroglial alterations, young PDAPP mice failed in the novel location recognition test, that depends on hippocampal function. Moreover, multivariate statistical analysis of the behavioral outcome in the open‐field test evidenced an elevated anxiety score in Tg mice compared with age‐matched control mice. In line with this, the transgenic group showed a higher number of c‐Fos+ nuclei in central and basolateral amygdala, a result that supports the early involvement of the emotionality factor in AD pathology. Applying an integrative approach, this work focuses on early structural, morphological and functional changes and provides new and compelling evidence of behavioral alterations that precede manifest AD.

Collaboration


Dive into the Flavia Saravia's collaboration.

Top Co-Authors

Avatar

Alejandro F. De Nicola

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Juan Beauquis

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Paulina Roig

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Analia Lima

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Luciana Pietranera

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angeles Vinuesa

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Carlos Pomilio

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

L. Pietranera

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Patricio Pavía

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge