Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flávio Alves Lara is active.

Publication


Featured researches published by Flávio Alves Lara.


PLOS Pathogens | 2011

Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota

Jose Henrique M. Oliveira; Renata L. S. Gonçalves; Flávio Alves Lara; Felipe A. Dias; Ana Caroline P. Gandara; Rubem F. S. Menna-Barreto; Meredith C. Edwards; Francisco R.M. Laurindo; Mário A.C. Silva-Neto; Marcos Henrique Ferreira Sorgine; Pedro L. Oliveira

The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.


The Journal of Experimental Biology | 2005

Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus

Flávio Alves Lara; Ulysses Lins; G. H. Bechara; Pedro L. Oliveira

SUMMARY Heme is present in all cells, acting as a cofactor in essential metabolic pathways such as respiration and photosynthesis. Moreover, both heme and its degradation products, CO, iron and biliverdin, have been ascribed important signaling roles. However, limited knowledge is available on the intracellular pathways involved in the flux of heme between different cell compartments. The cattle tick Boophilus microplus ingests 100 times its own mass in blood. The digest cells of the midgut endocytose blood components and huge amounts of heme are released during hemoglobin digestion. Most of this heme is detoxified by accumulation into a specialized organelle, the hemosome. We followed the fate of hemoglobin and albumin in primary cultures of digest cells by incubation with hemoglobin and albumin labeled with rhodamine. Uptake of hemoglobin by digest cells was inhibited by unlabeled globin, suggesting the presence of receptor-mediated endocytosis. After endocytosis, hemoglobin was observed inside large digestive vesicles. Albumin was exclusively associated with a population of small acidic vesicles, and an excess of unlabeled albumin did not inhibit its uptake. The intracellular pathway of the heme moiety of hemoglobin was specifically monitored using Palladium–mesoporphyrin IX (Pd-mP) as a fluorescent heme analog. When pulse and chase experiments were performed using digest cells incubated with Pd-mP bound to globin (Pd-mP-globin), strong yellow fluorescence was found in large digestive vesicles 4 h after the pulse. By 8 h, the emission of Pd-mP was red-shifted and more evident in the cytoplasm, and at 12 h most of the fluorescence was concentrated inside the hemosomes and had turned green. After 48 h, the Pd-mP signal was exclusively found in hemosomes. In methanol, Pd-mP showed maximal emission at 550 nm, exhibiting a red-shift to 665 nm when bound to proteins in vitro. The red emission in the cytosol and at the boundary of hemosomes suggests the presence of heme-binding proteins, probably involved in transport of heme to the hemosome. The existence of an intracellular heme shuttle from the digestive vesicle to the hemosome acting as a detoxification mechanism should be regarded as a major adaptation of ticks to a blood-feeding way of life. To our knowledge, this is the first direct observation of intracellular transport of heme in a living eukaryotic cell. A similar approach, using Pd-mP fluorescence, could be applied to study heme intracellular metabolism in other cell types.


The Journal of Experimental Biology | 2003

A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: Aggregation inside a specialized organelle, the hemosome

Flávio Alves Lara; Ulysses Lins; Gabriela O. Paiva-Silva; Igor C. Almeida; Cláudia M.S. Braga; Flávio Costa Miguens; Pedro L. Oliveira; Marílvia Dansa-Petretski

SUMMARY The hard tick Boophilus microplus ingests large volumes of cattle blood, as much as 100 times its own mass before feeding. Huge amounts of haem are produced during haemoglobin digestion, which takes place inside acidic lysosomal-type vacuoles of the digest cells of the midgut. Haem is a promoter of free radical formation, so haemoglobin digestion poses an intense oxidative challenge to this animal. In the present study we followed the fate of the haem derived from haemoglobin hydrolysis in the digest cells of the midgut of fully engorged tick females. The tick does not synthesize haem, so during the initial phase of blood digestion, absorption is the major route taken by the haem, which is transferred from the digest cells to the tick haemocoel. After this absorptive period of a few days, most of the haem produced upon haemoglobin degradation is accumulated in the interior of a specialized, membrane-delimited, organelle of the digest cell, herein called hemosome. Haem accounts for 90% of the hemosome mass and is concentrated in the core of this structure, appearing as a compact, non-crystalline aggregate of iron protoporphyrin IX without covalent modifications. The unusual FTIR spectrum of this aggregate suggests that lateral propionate chains are involved in the association of haem molecules with other components of the hemosome, which it is proposed is a major haem detoxification mechanism in this blood-sucking arthropod.


Cellular Microbiology | 2011

Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes

Katherine Antunes de Mattos; Flávio Alves Lara; Viviane G. C. Oliveira; Luciana Silva Rodrigues; Heloisa D'Avila; Rossana C. N. Melo; Pedro P.A. Manso; Euzenir Nunes Sarno; Patricia T. Bozza; Maria Cristina Vidal Pessolani

The predilection of Mycobacterium leprae (ML) for Schwann cells (SCs) leads to peripheral neuropathy, a major concern in leprosy. Highly infected SCs in lepromatous leprosy nerves show a foamy, lipid‐laden appearance; but the origin and nature of these lipids, as well as their role in leprosy, have remained unclear. The data presented show that ML has a pronounced effect on host‐cell lipid homeostasis through regulation of lipid droplet (lipid bodies, LD) biogenesis and intracellular distribution. Electron microscopy and immunohistochemical analysis of lepromatous leprosy nerves for adipose differentiation‐related protein expression, a classical LD marker, revealed accumulating LDs in close association to ML in infected SCs. The capacity of ML to induce LD formation was confirmed in in vitro studies with human SCs. Moreover, via confocal and live‐cell analysis, it was found that LDs are promptly recruited to bacterial phagosomes and that this process depends on cytoskeletal reorganization and PI3K signalling. ML‐induced LD biogenesis and recruitment were found to be independent of TLR2 bacterial sensing. Notably, LD recruitment impairment by cytoskeleton drugs decreased intracellular bacterial survival. Altogether, our data revealed SC lipid accumulation in ML‐containing phagosomes, which may represent a fundamental aspect of bacterial pathogenesis in the nerve.


Journal of Biological Chemistry | 2000

HeLp, a Heme Lipoprotein from the Hemolymph of the Cattle Tick, Boophilus microplus*

Clarissa M. Maya-Monteiro; Sirlei Daffre; Carlos Logullo; Flávio Alves Lara; Elias Walter Alves; Margareth L. Capurro; Russolina B. Zingali; Igor C. Almeida; Pedro L. Oliveira

The main protein of the hemolymph of the cattle tick Boophilus microplus has been isolated and shown to be a heme lipoprotein (HeLp). HeLp has an apparent molecular mass of 354,000 and contains two apoproteins (103 and 92 kDa) found in equal amounts. HeLp presents a pI of 5.8 and a density of 1.28 g/ml and contains 33% lipids, containing both neutral lipids and phospholipids, and 3% of sugars. A remarkable feature of HeLp is the abundance of cholesterol ester (35% of total lipids), a lipid not previously reported in invertebrate lipoproteins. Western blot analysis showed HeLp in hemolymph from adult females and males, but not in eggs. Although HeLp contains 2 heme molecules, it is capable of binding 6 additional molecules of heme. Boophilus feeds large amount of blood, and we recently showed that this tick is unable to performde novo synthesis of heme (Braz, G. R. C., Coelho, H. S. L., Masuda, H., and Oliveira, P. L. (1999)Curr. Biol. 9, 703–706). Injection of tick females with55Fe-labeled heme-HeLp indicated that this protein transports heme from hemolymph to tissues. HeLp is suggested to be an essential adaptation to the loss of the heme synthesis pathway.


Insect Biochemistry and Molecular Biology | 2008

Cellular and molecular characterization of an embryonic cell line (BME26) from the tick Rhipicephalus (Boophilus) microplus.

Eliane Esteves; Flávio Alves Lara; Daniel M. Lorenzini; Gustavo Henrique Nogueira Costa; Aline H. Fukuzawa; Luis N. Pressinotti; José Roberto Machado Cunha da Silva; Jesus Aparecido Ferro; Timothy J. Kurtti; Ulrike G. Munderloh; Sirlei Daffre

The cellular and molecular characteristics of a cell line (BME26) derived from embryos of the cattle tick Rhipicephalus (Boophilus) microplus were studied. The cells contained glycogen inclusions, numerous mitochondria, and vesicles with heterogeneous electron densities dispersed throughout the cytoplasm. Vesicles contained lipids and sequestered palladium meso-porphyrin (Pd-mP) and rhodamine-hemoglobin, suggesting their involvement in the autophagic and endocytic pathways. The cells phagocytosed yeast and expressed genes encoding the antimicrobial peptides (microplusin and defensin). A cDNA library was made and 898 unique mRNA sequences were obtained. Among them, 556 sequences were not significantly similar to any sequence found in public databases. Annotation using Gene Ontology revealed transcripts related to several different functional classes. We identified transcripts involved in immune response such as ferritin, serine proteases, protease inhibitors, antimicrobial peptides, heat shock protein, glutathione S-transferase, peroxidase, and NADPH oxidase. BME26 cells transfected with a plasmid carrying a red fluorescent protein reporter gene (DsRed2) transiently expressed DsRed2 for up to 5 weeks. We conclude that BME26 can be used to experimentally analyze diverse biological processes that occur in R. (B.) microplus such as the innate immune response to tick-borne pathogens.


Insect Molecular Biology | 2002

Expression and immunolocalization of a Boophilus microplus cathepsin L‐like enzyme

Gaby Renard; Flávio Alves Lara; F.C. Cardoso; Flávio Costa Miguens; Marílvia Dansa-Petretski; Carlos Termignoni; Aoi Masuda

Efforts are being undertaken to control tick infestations that cause important economic losses. A cathepsin L‐like endopeptidase of Boophilus microplus was expressed in Escherichia coli; the recombinant enzyme was capable of hydrolysing gelatin, tick vitellin and bovine haemoglobin. In this paper we focus on the expression and local of synthesis of this enzyme in the tick. RT‐PCR experiments showed that this endopeptidase is transcribed in the gut of partially engorged tick females. In immunoblotting, polyclonal antibodies against the recombinant enzyme reacted with proteins of larvae older than 5 days, of fully and partially engorged female gut. In immunolocalization experiments the enzyme was localized in probable secretory cells of the gut. Based on our findings we postulate that BmCL1 may be involved in haemoglobin degradation in the B. microplus gut. This enzyme may be used as target for the control of this parasite.


FEBS Letters | 2007

Extracellular lipid droplets promote hemozoin crystallization in the gut of the blood fluke Schistosoma mansoni

Juliana B. R. Correa Soares; Clarissa M. Maya-Monteiro; Paula R. Bittencourt-Cunha; Georgia C. Atella; Flávio Alves Lara; Joana da Costa P. d’Avila; Diego Menezes; Marcos A. Vannier-Santos; Pedro L. Oliveira; Timothy J. Egan; Marcus F. Oliveira

Hemozoin (Hz) is a heme crystal produced upon hemoglobin digestion as the main mechanism of heme disposal in several hematophagous organisms. Here, we show that, in the helminth Schistosoma mansoni, Hz formation occurs in extracellular lipid droplets (LDs). Transmission electron microscopy of adult worms revealed the presence of numerous electron‐lucent round structures similar to LDs in gut lumen, where multicrystalline Hz assemblies were found associated to their surfaces. Female regurgitates promoted Hz formation in vitro in reactions partially inhibited by boiling. Fractionation of regurgitates showed that Hz crystallization activity was essentially concentrated on lower density fractions, which have small amounts of pre‐formed Hz crystals, suggesting that hydrophilic–hydrophobic interfaces, and not Hz itself, play a key catalytic role in Hz formation in S. mansoni. Thus, these data demonstrate that LDs present in the gut lumen of S. mansoni support Hz formation possibly by allowing association of heme to the lipid–water interface of these structures.


Journal of Cerebral Blood Flow and Metabolism | 2009

On the fate of extracellular hemoglobin and heme in brain

Flávio Alves Lara; Suzana Assad Kahn; Anna Da Fonseca; Carlomagno Pacheco Bahia; João Pc Pinho; Aurélio V. Graça-Souza; Jean Chistophe Houzel; Pedro L. Oliveira; Vivaldo Moura-Neto; Marcus F. Oliveira

Intracerebral hemorrhage (ICH) is a major cause of disability in adults worldwide. The pathophysiology of this syndrome is complex, involving both inflammatory and redox components triggered by the extravasation of blood into the cerebral parenchyma. Hemoglobin, heme, and iron released therein seem be important in the brain damage observed in ICH. However, there is a lack of information concerning hemoglobin traffic and metabolism in brain cells. Here, we investigated the fate of hemoglobin and heme in cultured neurons and astrocytes, as well as in the cortex of adult rats. Hemoglobin was made traceable by conjugation to Alexa 488, whereas a fluorescent heme analogue (tin-protoporphyrin IX) was prepared to allow heme tracking. Using fluorescence microscopy we observed that neurons were more efficient in uptake hemoglobin and heme than astrocytes. Exposure of cortical neurons to hemoglobin or heme resulted in an oxidative stress condition. Viability assays showed that neurons were more susceptible to both hemoglobin and heme toxicity than astrocytes. Together, these results show that neurons, rather than astrocytes, preferentially take up hemoglobin-derived products, indicating that these cells are actively involved in the ICH-associated brain damage.


Antimicrobial Agents and Chemotherapy | 2014

Statins Increase Rifampin Mycobactericidal Effect

Lívia Silva Lobato; Patrícia Sammarco Rosa; Jessica da Silva Ferreira; Arthur da Silva Neumann; Marlei Gomes da Silva; Dejair Caitano do Nascimento; Cleverson Teixeira Soares; Silvia Cristina Barbosa Pedrini; Diego Sá Leal de Oliveira; Cláudia Peres Monteiro; Geraldo Moura Batista Pereira; Marcelo Ribeiro-Alves; Mariana A. Hacker; Milton Ozório Moraes; Maria Cristina Vidal Pessolani; Rafael Silva Duarte; Flávio Alves Lara

ABSTRACT Mycobacterium leprae and Mycobacterium tuberculosis antimicrobial resistance has been followed with great concern during the last years, while the need for new drugs able to control leprosy and tuberculosis, mainly due to extensively drug-resistant tuberculosis (XDR-TB), is pressing. Our group recently showed that M. leprae is able to induce lipid body biogenesis and cholesterol accumulation in macrophages and Schwann cells, facilitating its viability and replication. Considering these previous results, we investigated the efficacies of two statins on the intracellular viability of mycobacteria within the macrophage, as well as the effect of atorvastatin on M. leprae infections in BALB/c mice. We observed that intracellular mycobacteria viability decreased markedly after incubation with both statins, but atorvastatin showed the best inhibitory effect when combined with rifampin. Using Shepards model, we observed with atorvastatin an efficacy in controlling M. leprae and inflammatory infiltrate in the BALB/c footpad, in a serum cholesterol level-dependent way. We conclude that statins contribute to macrophage-bactericidal activity against Mycobacterium bovis, M. leprae, and M. tuberculosis. It is likely that the association of statins with the actual multidrug therapy effectively reduces mycobacterial viability and tissue lesion in leprosy and tuberculosis patients, although epidemiological studies are still needed for confirmation.

Collaboration


Dive into the Flávio Alves Lara's collaboration.

Top Co-Authors

Avatar

Pedro L. Oliveira

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciana Silva Rodrigues

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Marcos Henrique Ferreira Sorgine

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge