Flavio Fröhlich
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Flavio Fröhlich.
Neuron | 2010
Flavio Fröhlich; David A. McCormick
Local field potentials and the underlying endogenous electric fields (EFs) are traditionally considered to be epiphenomena of structured neuronal network activity. Recently, however, externally applied EFs have been shown to modulate pharmacologically evoked network activity in rodent hippocampus. In contrast, very little is known about the role of endogenous EFs during physiological activity states in neocortex. Here, we used the neocortical slow oscillation in vitro as a model system to show that weak sinusoidal and naturalistic EFs enhance and entrain physiological neocortical network activity with an amplitude threshold within the range of in vivo endogenous field strengths. Modulation of network activity by positive and negative feedback fields based on the network activity in real-time provide direct evidence for a feedback loop between neuronal activity and endogenous EF. This significant susceptibility of active networks to EFs that only cause small changes in membrane potential in individual neurons suggests that endogenous EFs could guide neocortical network activity.
The Journal of Neuroscience | 2013
Mohsin M. Ali; Kristin K. Sellers; Flavio Fröhlich
Transcranial direct current stimulation (tDCS) has emerged as a potentially safe and effective brain stimulation modality that alters cortical excitability by passing a small, constant electric current through the scalp. tDCS creates an electric field that weakly modulates the membrane voltage of a large number of cortical neurons. Recent human studies have suggested that sine-wave stimulation waveforms [transcranial alternating current stimulation (tACS)] represent a more targeted stimulation paradigm for the enhancement of cortical oscillations. Yet, the underlying mechanisms of how periodic, weak global perturbations alter the spatiotemporal dynamics of large-scale cortical network dynamics remain a matter of debate. Here, we simulated large-scale networks of spiking neuron models to address this question in endogenously rhythmic networks. We identified distinct roles of the depolarizing and hyperpolarizing phases of tACS in entrainment, which entailed moving network activity toward and away from a strong nonlinearity provided by the local excitatory coupling of pyramidal cells. Together, these mechanisms gave rise to resonance dynamics characterized by an Arnold tongue centered on the resonance frequency of the network. We then performed multichannel extracellular recordings of multiunit firing activity during tACS in anesthetized ferrets (Mustela putoris furo), a model species with a gyrencephalic brain, to verify that weak global perturbations can selectively enhance oscillations at the applied stimulation frequency. Together, these results provide a detailed mechanistic understanding of tACS at the level of large-scale network dynamics and support the future design of activity-dependent feedback tACS paradigms that dynamically tailor stimulation frequency to the spectral peak of ongoing brain activity.
The Neuroscientist | 2008
Flavio Fröhlich; Maxim Bazhenov; Vicente Iragui-Madoz; Terrence J. Sejnowski
The role of changes in the extracellular potassium concentration [K+]o in epilepsy has remained unclear. Historically, it was hypothesized that [K+] o is the causal factor for epileptic seizures. This so-called potassium accumulation hypothesis led to substantial debate but subsequently failed to find wide acceptance. However, recent studies on the pathophysiology of tissue from epileptic human patients and animal epilepsy models revealed aberrations in [K+]o regulation. Computational models of cortical circuits that include ion concentration dynamics have catalyzed a renewed interest in the role of [K+]o in epilepsy. The authors here connect classical and more recent insights on [K+] o dynamics in the cortex with the goal of providing starting points for a next generation of [K+]o research. Such research may ultimately lead to an entirely new class of antiepileptic drugs that act on the [K+]o regulation system. NEUROSCIENTIST 14(5):422—433, 2008. DOI: 10.1177/1073858408317955
The Journal of Neuroscience | 2008
Flavio Fröhlich; Maxim Bazhenov; Terrence J. Sejnowski
Slow periodic EEG discharges are common in CNS disorders. The pathophysiology of this aberrant rhythmic activity is poorly understood. We used a computational model of a neocortical network with a dynamic homeostatic scaling rule to show that loss of input (partial deafferentation) can trigger network reorganization that results in pathological periodic discharges. The decrease in average firing rate in the network by deafferentation was compensated by homeostatic synaptic scaling of recurrent excitation among pyramidal cells. Synaptic scaling succeeded in recovering the network target firing rate for all degrees of deafferentation (fraction of deafferented cells), but there was a critical degree of deafferentation for pathological network reorganization. For deafferentation degrees below this value, homeostatic upregulation of recurrent excitation had minimal effect on the macroscopic network dynamics. For deafferentation above this threshold, however, a slow periodic oscillation appeared, patterns of activity were less sparse, and bursting occurred in individual neurons. Also, comparison of spike-triggered afferent and recurrent excitatory conductances revealed that information transmission was strongly impaired. These results suggest that homeostatic plasticity can lead to secondary functional impairment in case of cortical disorders associated with cell loss.
The Journal of Neuroscience | 2010
Flavio Fröhlich; Terrence J. Sejnowski; Maxim Bazhenov
Little is known about how cortical networks support the emergence of remarkably different activity patterns. Physiological activity interspersed with epochs of pathological hyperactivity in the epileptic brain represents a clinically relevant yet poorly understood case of such rich dynamic repertoire. Using a realistic computational model, we demonstrate that physiological sparse and pathological tonic-clonic activity may coexist in the same cortical network for identical afferent input level. Transient perturbations in the afferent input were sufficient to switch the network between these two stable states. The effectiveness of the potassium regulatory apparatus determined the stability of the physiological state and the threshold for seizure initiation. Our findings contrast with the common notions of (1) pathological brain activity representing dynamic instabilities and (2) necessary adjustments of experimental conditions to elicit different network states. Rather, we propose that the rich dynamic repertoire of cortical networks may be based on multistabilities intrinsic to the network.
The Journal of Neuroscience | 2006
Flavio Fröhlich; Maxim Bazhenov; Igor Timofeev; Mircea Steriade; Terrence J. Sejnowski
Little is known about the dynamics and mechanisms of transitions between tonic firing and bursting in cortical networks. Here, we use a computational model of a neocortical circuit with extracellular potassium dynamics to show that activity-dependent modulation of intrinsic excitability can lead to sustained oscillations with slow transitions between two distinct firing modes: fast run (tonic spiking or fast bursts with few spikes) and slow bursting. These transitions are caused by a bistability with hysteresis in a pyramidal cell model. Balanced excitation and inhibition stabilizes a network of pyramidal cells and inhibitory interneurons in the bistable region and causes sustained periodic alternations between distinct oscillatory states. During spike-wave seizures, neocortical paroxysmal activity exhibits qualitatively similar slow transitions between fast run and bursting. We therefore predict that extracellular potassium dynamics can cause alternating episodes of fast and slow oscillatory states in both normal and epileptic neocortical networks.
Brain Stimulation | 2014
Stephen L. Schmidt; Apoorva K. Iyengar; A. Alban Foulser; Michael R. Boyle; Flavio Fröhlich
BACKGROUND Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations by application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. OBJECTIVE We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of a weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that endogenous cortical oscillations constrain neuromodulation by tACS. METHODS We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo-like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. RESULTS Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing, but not overriding, intrinsic network dynamics. CONCLUSION Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms.
Current Biology | 2016
Caroline Lustenberger; Michael R. Boyle; Sankaraleengam Alagapan; Juliann M. Mellin; Bradley V. Vaughn; Flavio Fröhlich
Transient episodes of brain oscillations are a common feature of both the waking and the sleeping brain. Sleep spindles represent a prominent example of a poorly understood transient brain oscillation that is impaired in disorders such as Alzheimers disease and schizophrenia. However, the causal role of these bouts of thalamo-cortical oscillations remains unknown. Demonstrating a functional role of sleep spindles in cognitive processes has, so far, been hindered by the lack of a tool to target transient brain oscillations in real time. Here, we show, for the first time, selective enhancement of sleep spindles with non-invasive brain stimulation in humans. We developed a system that detects sleep spindles in real time and applies oscillatory stimulation. Our stimulation selectively enhanced spindle activity as determined by increased sigma activity after transcranial alternating current stimulation (tACS) application. This targeted modulation caused significant enhancement of motor memory consolidation that correlated with the stimulation-induced change in fast spindle activity. Strikingly, we found a similar correlation between motor memory and spindle characteristics during the sham night for the same spindle frequencies and electrode locations. Therefore, our results directly demonstrate a functional relationship between oscillatory spindle activity and cognition.
Journal of Neurophysiology | 2013
Kristin K. Sellers; Davis V. Bennett; Axel Hutt; Flavio Fröhlich
Anesthesia is widely used in medicine and research to achieve altered states of consciousness and cognition. Whereas changes to macroscopic cortical activity patterns by anesthesia measured at the spatial resolution of electroencephalography have been widely studied, modulation of mesoscopic and microscopic network dynamics by anesthesia remain poorly understood. To address this gap in knowledge, we recorded spontaneous mesoscopic (local field potential) and microscopic (multiunit activity) network dynamics in primary visual cortex (V1) and prefrontal cortex (PFC) of awake and isoflurane anesthetized ferrets (Mustela putoris furo). This approach allowed for examination of activity as a function of cortical area, cortical layer, and anesthetic depth with much higher spatial and temporal resolution than in previous studies. We hypothesized that a primary sensory area and an association cortical area would exhibit different patterns of network modulation by anesthesia due to their different functional roles. Indeed, we found effects specific to cortical area and cortical layer. V1 exhibited minimal changes in rhythmic structure with anesthesia but differential modulation of input layer IV. In contrast, anesthesia profoundly altered spectral power in PFC, with more uniform modulation across cortical layers. Our results demonstrate that anesthesia modulates spontaneous cortical activity in an area- and layer-specific manner. These finding provide the basis for 1) refining anesthesia monitoring algorithms, 2) reevaluating the large number of systems neuroscience studies performed in anesthetized animals, and 3) increasing our understanding of differential dynamics across cortical layers and areas.
Journal of Neurophysiology | 2015
Kristin K. Sellers; Davis V. Bennett; Axel Hutt; James H. Williams; Flavio Fröhlich
During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers.