Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flavio Romano is active.

Publication


Featured researches published by Flavio Romano.


Journal of Chemical Physics | 2012

Sequence-dependent thermodynamics of a coarse-grained DNA model

Petr Šulc; Flavio Romano; Thomas E. Ouldridge; Lorenzo Rovigatti; Jonathan P. K. Doye; Ard A. Louis

We introduce a sequence-dependent parametrization for a coarse-grained DNA model [T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, J. Chem. Phys. 134, 085101 (2011)] originally designed to reproduce the properties of DNA molecules with average sequences. The new parametrization introduces sequence-dependent stacking and base-pairing interaction strengths chosen to reproduce the melting temperatures of short duplexes. By developing a histogram reweighting technique, we are able to fit our parameters to the melting temperatures of thousands of sequences. To demonstrate the flexibility of the model, we study the effects of sequence on: (a) the heterogeneous stacking transition of single strands, (b) the tendency of a duplex to fray at its melting point, (c) the effects of stacking strength in the loop on the melting temperature of hairpins, (d) the force-extension properties of single strands, and (e) the structure of a kissing-loop complex. Where possible, we compare our results with experimental data and find a good agreement. A simulation code called oxDNA, implementing our model, is available as a free software.


Nature Materials | 2011

Colloidal self-assembly: Patchy from the bottom up

Flavio Romano; Francesco Sciortino

The realization of a self-assembled kagome lattice from colloids with attractive hydrophobic patches offers a simple but powerful example of the bottom-up design strategy.


Nature Communications | 2012

Patterning symmetry in the rational design of colloidal crystals

Flavio Romano; Francesco Sciortino

Colloidal particles have the right size to form ordered structures with periodicities comparable to the wavelength of visible light. The tantalizing colours of precious opals and the colour of some species of birds are examples of polycrystalline colloidal structures found in nature. Driven by the demands of several emergent technologies, efforts have been made to develop efficient, self-assembly-based methodologies for generating colloidal single crystals with well-defined morphologies. Somewhat unfortunately, these efforts are often frustrated by the formation of structures lacking long-range order. Here we show that the rational design of patch shape and symmetry can drive patchy colloids to crystallize in a single, selected morphology by structurally eliminating undesired polymorphs. We provide a proof of this concept through the numerical investigation of triblock Janus colloids. One particular choice of patch symmetry yields, via spontaneous crystallization, a pure tetrastack lattice, a structure with attractive photonic properties, whereas another one results in a colloidal clathrate-like structure, in both cases without any interfering polymorphs.


Journal of Chemical Physics | 2010

Phase diagram of a tetrahedral patchy particle model for different interaction ranges

Flavio Romano; Eduardo Sanz; Francesco Sciortino

We evaluate the phase diagram of the Kern–Frenkel patchy model with four interaction sites for four different values of the radial interaction range (all in the single-bond-per-patch regime) keeping the area of the interaction patches fixed. Four stable crystal phases are investigated, namely diamond cubic (DC), bcc, fcc, and plastic fcc. The DC is favored at low temperatures and pressures, while the bcc is favored at low temperatures and intermediate to high pressures. At low temperatures and very high pressures an ordered fcc phase is found, while—as expected—at high temperatures, the only stable crystal is a plastic fcc phase. We find a rich phase diagram with several re-entrant coexistence lines, which can be brought in the equilibrium phase diagram by a proper choice of the range. We also show that the gas-liquid phase separation becomes metastable as the range narrows, and it takes place in a region of the phase diagram where the low density diamond crystal is the thermodynamically stable phase.


Nucleic Acids Research | 2013

DNA hybridization kinetics: zippering, internal displacement and sequence dependence

Thomas E. Ouldridge; Petr Šulc; Flavio Romano; Jonathan P. K. Doye; Ard A. Louis

Although the thermodynamics of DNA hybridization is generally well established, the kinetics of this classic transition is less well understood. Providing such understanding has new urgency because DNA nanotechnology often depends critically on binding rates. Here, we explore DNA oligomer hybridization kinetics using a coarse-grained model. Strand association proceeds through a complex set of intermediate states, with successful binding events initiated by a few metastable base-pairing interactions, followed by zippering of the remaining bonds. But despite reasonably strong interstrand interactions, initial contacts frequently dissociate because typical configurations in which they form differ from typical states of similar enthalpy in the double-stranded equilibrium ensemble. Initial contacts must be stabilized by two or three base pairs before full zippering is likely, resulting in negative effective activation enthalpies. Non-Arrhenius behavior arises because the number of base pairs required for nucleation increases with temperature. In addition, we observe two alternative pathways—pseudoknot and inchworm internal displacement—through which misaligned duplexes can rearrange to form duplexes. These pathways accelerate hybridization. Our results explain why experimentally observed association rates of GC-rich oligomers are higher than rates of AT- rich equivalents, and more generally demonstrate how association rates can be modulated by sequence choice.


Journal of Chemical Physics | 2011

Crystallization of tetrahedral patchy particles in silico.

Flavio Romano; Eduardo Sanz; Francesco Sciortino

We investigate the competition between glass formation and crystallization of open tetrahedral structures for particles with tetrahedral patchy interactions. We analyze the outcome of such competition as a function of the potential parameters. Specifically, we focus on the separate roles played by the interaction range and the angular width of the patches, and show that open crystal structures (cubic and hexagonal diamond and their stacking hybrids) spontaneously form when the angular width is smaller than about 30°. Evaluating the temperature and density dependence of the chemical potential of the fluid and of the crystal phases, we find that adjusting the patch width affects the fluid and crystal in different ways. As a result of the different scaling, the driving force for spontaneous self-assembly rapidly grows as the fluid is undercooled for small-width patches, while it only grows slowly for large-width patches, in which case crystallization is pre-empted by dynamic arrest into a network glass.


Physical Chemistry Chemical Physics | 2013

Coarse-graining DNA for simulations of DNA nanotechnology

Jonathan P. K. Doye; Thomas E. Ouldridge; Ard A. Louis; Flavio Romano; Petr Šulc; Christian Matek; Benedict E. K. Snodin; Lorenzo Rovigatti; John S. Schreck; Ryan M. Harrison; William P. J. Smith

To simulate long time and length scale processes involving DNA it is necessary to use a coarse-grained description. Here we provide an overview of different approaches to such coarse-graining, focussing on those at the nucleotide level that allow the self-assembly processes associated with DNA nanotechnology to be studied. OxDNA, our recently-developed coarse-grained DNA model, is particularly suited to this task, and has opened up this field to systematic study by simulations. We illustrate some of the range of DNA nanotechnology systems to which the model is being applied, as well as the insights it can provide into fundamental biophysical properties of DNA.


Journal of Chemical Physics | 2015

Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

Benedict E. K. Snodin; Ferdinando Randisi; Majid Mosayebi; Petr Šulc; John S. Schreck; Flavio Romano; Thomas E. Ouldridge; Roman Tsukanov; Eyal Nir; Ard A. Louis; Jonathan P. K. Doye

We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na(+)] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.


Journal of Chemical Physics | 2013

Coarse-grained simulations of DNA overstretching.

Flavio Romano; Debayan Chakraborty; Jonathan P. K. Doye; Thomas E. Ouldridge; Ard A. Louis

We use a recently developed coarse-grained model to simulate the overstretching of duplex DNA. Overstretching at 23 °C occurs at 74 pN in the model, about 6-7 pN higher than the experimental value at equivalent salt conditions. Furthermore, the model reproduces the temperature dependence of the overstretching force well. The mechanism of overstretching is always force-induced melting by unpeeling from the free ends. That we never see S-DNA (overstretched duplex DNA), even though there is clear experimental evidence for this mode of overstretching under certain conditions, suggests that S-DNA is not simply an unstacked but hydrogen-bonded duplex, but instead probably has a more exotic structure.


ACS Nano | 2014

Gels of DNA nanostars never crystallize

Lorenzo Rovigatti; Frank Smallenburg; Flavio Romano; Francesco Sciortino

Using state-of-the-art numerical techniques, we show that, upon lowering the temperature, tetravalent DNA nanostars form a thermodynamically stable, fully bonded equilibrium gel. In contrast to atomic and molecular network formers, in which the disordered liquid is always metastable with respect to some crystalline phase, we find that the DNA nanostar gel has a lower free energy than the diamond crystal structure in a wide range of concentrations. This unconventional behavior, here verified for the first time in a realistic model, arises from the large arm flexibility of the DNA nanostars, a property that can be tuned by design. Our results confirm the thermodynamic stability of the recently experimentally realized DNA hydrogels.

Collaboration


Dive into the Flavio Romano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo Sanz

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge