Flávio S. J. de Souza
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Flávio S. J. de Souza.
The Journal of Neuroscience | 2004
Linda S. Overstreet; Shane T. Hentges; Viviana F. Bumaschny; Flávio S. J. de Souza; James L. Smart; Andrea M. Santangelo; Malcolm J. Low; Gary L. Westbrook; Marcelo Rubinstein
Neurogenesis in the dentate gyrus continues into adulthood, yet little is known about the function of newly born neurons or how they integrate into an existing network of mature neurons. We made transgenic mice that selectively and transiently express enhanced green fluorescent protein (EGFP) in newly born granule cells of the dentate gyrus under the transcriptional control of proopiomelanocortin (POMC) genomic sequences. Analysis of transgenic pedigrees with truncation or deletion mutations indicated that EGFP expression in the dentate gyrus required cryptic POMC promoter regions dispensable for arcuate hypothalamic or pituitary expression. Unlike arcuate neurons, dentate granule cells did not express the endogenous POMC gene. EGFP-positive neurons had immature properties, including short spineless dendrites and small action potentials. Colocalization with bromodeoxyuridine indicated that EGFP-labeled granule cells were ∼2 weeks postmitotic. EGFP-labeled cells expressed markers for immature granule cells but not the glial marker GFAP. The number of EGFP-labeled neurons declined with age and increased with exercise, paralleling neurogenesis. Our results indicate that POMC-EGFP marks immature granule cells and that adult-generated granule cells integrate quite slowly into the hippocampal circuitry.
PLOS Genetics | 2015
Daniel D. Lam; Flávio S. J. de Souza; Sofia Nasif; Miho Yamashita; Rodrigo López-Leal; Veronica Otero-Corchon; Kana Meece; Harini Sampath; Aaron J. Mercer; Sharon L. Wardlaw; Marcelo Rubinstein; Malcolm J. Low
Cell-specific expression of many genes is conveyed by multiple enhancers, with each individual enhancer controlling a particular expression domain. In contrast, multiple enhancers drive similar expression patterns of some genes involved in embryonic development, suggesting regulatory redundancy. Work in Drosophila has indicated that functionally overlapping enhancers canalize development by buffering gene expression against environmental and genetic disturbances. However, little is known about regulatory redundancy in vertebrates and in genes mainly expressed during adulthood. Here we study nPE1 and nPE2, two phylogenetically conserved mammalian enhancers that drive expression of the proopiomelanocortin gene (Pomc) to the same set of hypothalamic neurons. The simultaneous deletion of both enhancers abolished Pomc expression at all ages and induced a profound metabolic dysfunction including early-onset extreme obesity. Targeted inactivation of either nPE1 or nPE2 led to very low levels of Pomc expression during early embryonic development indicating that both enhancers function synergistically. In adult mice, however, Pomc expression is controlled additively by both enhancers, with nPE1 being responsible for ∼80% and nPE2 for ∼20% of Pomc transcription. Consequently, nPE1 knockout mice exhibit mild obesity whereas nPE2-deficient mice maintain a normal body weight. These results suggest that nPE2-driven Pomc expression is compensated by nPE1 at later stages of development, essentially rescuing the earlier phenotype of nPE2 deficiency. Together, these results reveal that cooperative interactions between the enhancers confer robustness of Pomc expression against gene regulatory disturbances and preclude deleterious metabolic phenotypes caused by Pomc deficiency in adulthood. Thus, our study demonstrates that enhancer redundancy can be used by genes that control adult physiology in mammals and underlines the potential significance of regulatory sequence mutations in common diseases.
Molecular and Cellular Biology | 2005
Flávio S. J. de Souza; Andrea M. Santangelo; Viviana F. Bumaschny; María Elena Avale; James L. Smart; Malcolm J. Low; Marcelo Rubinstein
ABSTRACT The proopiomelanocortin (POMC) gene is expressed in the pituitary and arcuate neurons of the hypothalamus. POMC arcuate neurons play a central role in the control of energy homeostasis, and rare loss-of-function mutations in POMC cause obesity. Moreover, POMC is the prime candidate gene within a highly significant quantitative trait locus on chromosome 2 associated with obesity traits in several human populations. Here, we identify two phylogenetically conserved neuronal POMC enhancers designated nPE1 (600 bp) and nPE2 (150 bp) located approximately 10 to 12 kb upstream of mammalian POMC transcriptional units. We show that mouse or human genomic regions containing these enhancers are able to direct reporter gene expression to POMC hypothalamic neurons, but not the pituitary of transgenic mice. Conversely, deletion of nPE1 and nPE2 in the context of the entire transcriptional unit of POMC abolishes transgene expression in the hypothalamus without affecting pituitary expression. Our results indicate that the nPEs are necessary and sufficient for hypothalamic POMC expression and that POMC expression in the brain and pituitary is controlled by independent sets of enhancers. Our study advances the understanding of the molecular nature of hypothalamic POMC neurons and will be useful to determine whether polymorphisms in POMC regulatory regions play a role in the predisposition to obesity.
Journal of Clinical Investigation | 2012
Viviana F. Bumaschny; Miho Yamashita; Rodrigo Casas-Cordero; Veronica Otero-Corchon; Flávio S. J. de Souza; Marcelo Rubinstein; Malcolm J. Low
Obesity is a chronic metabolic disorder affecting half a billion people worldwide. Major difficulties in managing obesity are the cessation of continued weight loss in patients after an initial period of responsiveness and rebound to pretreatment weight. It is conceivable that chronic weight gain unrelated to physiological needs induces an allostatic regulatory state that defends a supranormal adipose mass despite its maladaptive consequences. To challenge this hypothesis, we generated a reversible genetic mouse model of early-onset hyperphagia and severe obesity by selectively blocking the expression of the proopiomelanocortin gene (Pomc) in hypothalamic neurons. Eutopic reactivation of central POMC transmission at different stages of overweight progression normalized or greatly reduced food intake in these obesity-programmed mice. Hypothalamic Pomc rescue also attenuated comorbidities such as hyperglycemia, hyperinsulinemia, and hepatic steatosis and normalized locomotor activity. However, effectiveness of treatment to normalize body weight and adiposity declined progressively as the level of obesity at the time of Pomc induction increased. Thus, our study using a novel reversible monogenic obesity model reveals the critical importance of early intervention for the prevention of subsequent allostatic overload that auto-perpetuates obesity.
European Journal of Pharmacology | 2011
Flávio S. J. de Souza; Sofia Nasif; Rodrigo López-Leal; Diego H. Levi; Malcolm J. Low; Marcelo Rubinsten
The gene encoding the prohormone proopiomelanocortin (POMC) is mainly expressed in two regions in vertebrates, namely corticotrophs and melanotrophs in the pituitary and a small population of neurons in the arcuate nucleus of the hypothalamus. In this latter region, POMC-derived peptides participate in the control of energy balance and sensitivity to pain. Neuronal expression of POMC is conferred by two enhancers, nPE1 and nPE2, which are conserved in most mammals, but no transcription factors are yet known to bind to these enhancers. In this work, by means of a one-hybrid screening, we identify that nPE2 possesses an element recognized by transcription factors of the nuclear receptor superfamily. This element, named NRBE, is conserved in all known nPE2 enhancers and is necessary to confer full enhancer strength to nPE2-driven reporter gene expression in transgenic mice assays, indicating that the phylogenetic conservation of the element is indicative of its functional importance. In a search for candidate nuclear receptors that might control POMC we observed that estrogen receptor alpha (ESR1) - a known regulator of energy balance at the hypothalamic level - can bind to the NRBE element in vitro. In addition we observed by immunofluorescence that ESR1 is coexpressed with POMC in around 25-30% of hypothalamic neurons of males and females during late embryonic stages and adulthood. Thus, our results indicate that hypothalamic expression of POMC is controlled by nuclear receptors and establish ESR1 as a candidate regulator of POMC.
Philosophical Transactions of the Royal Society B | 2013
Marcelo Rubinstein; Flávio S. J. de Souza
Deciphering the genetic bases that drive animal diversity is one of the major challenges of modern biology. Although four decades ago it was proposed that animal evolution was mainly driven by changes in cis-regulatory DNA elements controlling gene expression rather than in protein-coding sequences, only now are powerful bioinformatics and experimental approaches available to accelerate studies into how the evolution of transcriptional enhancers contributes to novel forms and functions. In the introduction to this Theme Issue, we start by defining the general properties of transcriptional enhancers, such as modularity and the coexistence of tight sequence conservation with transcription factor-binding site shuffling as different mechanisms that maintain the enhancer grammar over evolutionary time. We discuss past and current methods used to identify cell-type-specific enhancers and provide examples of how enhancers originate de novo, change and are lost in particular lineages. We then focus in the central part of this Theme Issue on analysing examples of how the molecular evolution of enhancers may change form and function. Throughout this introduction, we present the main findings of the articles, reviews and perspectives contributed to this Theme Issue that together illustrate some of the great advances and current frontiers in the field.
Philosophical Transactions of the Royal Society B | 2013
Sabina Domene; Viviana F. Bumaschny; Flávio S. J. de Souza; Lucía F. Franchini; Sofia Nasif; Malcolm J. Low; Marcelo Rubinstein
Mutations in regulatory regions including enhancers are an important source of variation and innovation during evolution. Enhancers can evolve by changes in the sequence, arrangement and repertoire of transcription factor binding sites, but whole enhancers can also be lost or gained in certain lineages in a process of turnover. The proopiomelanocortin gene (Pomc), which encodes a prohormone, is expressed in the pituitary and hypothalamus of all jawed vertebrates. We have previously described that hypothalamic Pomc expression in mammals is controlled by two enhancers—nPE1 and nPE2—that are derived from transposable elements and that presumably replaced the ancestral neuronal Pomc regulatory regions. Here, we show that nPE1 and nPE2, even though they are mammalian novelties with no homologous counterpart in other vertebrates, nevertheless can drive gene expression specifically to POMC neurons in the hypothalamus of larval and adult transgenic zebrafish. This indicates that when neuronal Pomc enhancers originated de novo during early mammalian evolution, the newly created cis- and trans-codes were similar to the ancestral ones. We also identify the neuronal regulatory region of zebrafish pomca and confirm that it is not homologous to the mammalian enhancers. Our work sheds light on the process of gene regulatory evolution by showing how a locus can undergo enhancer turnover and nevertheless maintain the ancestral transcriptional output.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Sofia Nasif; Flávio S. J. de Souza; Laura E. González; Miho Yamashita; Daniela P. Orquera; Malcolm J. Low; Marcelo Rubinstein
Significance Food intake and body weight regulation depend on a group of hypothalamic neurons that release satiety-induced neuropeptides known as melanocortins. Central melanocortins are encoded by the proopiomelanocortin gene (Pomc), and mice and humans carrying deleterious mutations in the Pomc gene display hyperphagia and severe obesity. Although the importance of these neurons is well understood, the genetic program that establishes hypothalamic melanocortin neurons and maintains normal Pomc expression levels remains unknown. Here, we combined molecular neuroanatomical and biochemical analyses with functional genetic studies in transgenic mice and zebrafish and discovered that the transcription factor Islet 1 determines the identity of central melanocortin neurons during early brain development and is critical for melanocortin-induced satiety and normal adiposity throughout the entire lifetime. Food intake and body weight regulation depend on proper expression of the proopiomelanocortin gene (Pomc) in a group of neurons located in the mediobasal hypothalamus of all vertebrates. These neurons release POMC-encoded melanocortins, which are potent anorexigenic neuropeptides, and their absence from mice or humans leads to hyperphagia and severe obesity. Although the pathophysiology of hypothalamic POMC neurons is well understood, the genetic program that establishes the neuronal melanocortinergic phenotype and maintains a fully functional neuronal POMC phenotype throughout adulthood remains unknown. Here, we report that the early expression of the LIM-homeodomain transcription factor Islet 1 (ISL1) in the developing hypothalamus promotes the terminal differentiation of melanocortinergic neurons and is essential for hypothalamic Pomc expression since its initial onset and throughout the entire lifetime. We detected ISL1 in the prospective hypothalamus just before the onset of Pomc expression and, from then on, Pomc and Isl1 coexpress. ISL1 binds in vitro and in vivo to critical homeodomain binding DNA motifs present in the neuronal Pomc enhancers nPE1 and nPE2, and mutations of these sites completely disrupt the ability of these enhancers to drive reporter gene expression to hypothalamic POMC neurons in transgenic mice and zebrafish. ISL1 is necessary for hypothalamic Pomc expression during mouse and zebrafish embryogenesis. Furthermore, conditional Isl1 inactivation from POMC neurons impairs Pomc expression, leading to hyperphagia and obesity. Our results demonstrate that ISL1 specifies the identity of hypothalamic melanocortin neurons and is required for melanocortin-induced satiety and normal adiposity throughout the entire lifespan.
PLOS Genetics | 2007
Andrea M. Santangelo; Flávio S. J. de Souza; Lucía F. Franchini; Viviana F. Bumaschny; Malcolm J. Low; Marcelo Rubinstein
Molecular Biology and Evolution | 2005
Flávio S. J. de Souza; Viviana F. Bumaschny; Malcolm J. Low; Marcelo Rubinstein