Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flemming Andersen is active.

Publication


Featured researches published by Flemming Andersen.


European Journal of Nuclear Medicine and Molecular Imaging | 2005

PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients

Anne Kiil Berthelsen; S. Holm; Annika Loft; Thomas Levin Klausen; Flemming Andersen; Liselotte Højgaard

PurposeIf the CT scan of a combined PET/CT study is performed as a full diagnostic quality CT scan including intravenous (IV) contrast agent, the quality of the joint PET/CT procedure is improved and a separate diagnostic CT scan can be avoided. CT with IV contrast can be used for PET attenuation correction, but this may result in a bias in the attenuation factors. The clinical significance of this bias has not been established. Our aim was to perform a prospective clinical study where each patient had CT performed with and without IV contrast agent to establish whether PET/CT with IV contrast can be used for PET attenuation without reducing the clinical value of the PET scan.MethodsA uniform phantom study was used to document that the PET acquisition itself is not significantly influenced by the presence of IV contrast medium. Then, 19 patients referred to PET/CT with IV contrast underwent CT scans without, and then with contrast agent, followed by an 18F-fluorodeoxyglucose whole-body PET scan. The CT examinations were performed with identical parameters on a GE Discovery LS scanner. The PET data were reconstructed with attenuation correction based on the two CT data sets. A global comparison of standard uptake value (SUV) was performed, and SUVs in tumour, in non-tumour tissue and in the subclavian vein were calculated. Clinical evaluation of the number and location of lesions on all PET/CT scans was performed twice, blinded and in a different random order, by two independent nuclear medicine specialists.ResultsIn all patients, the measured global SUV of PET images based on CT with IV contrast agent was higher than the global activity using non-contrast correction. The overall increase in the mean SUV (for two different conversion tables tested) was 4.5±2.3% and 1.6±0.5%, respectively. In 11/19 patients, focal uptake was identified corresponding to malignant tumours. Eight out of 11 tumours showed an increased SUVmax (2.9±3.1%) on the PET images reconstructed using IV contrast. The clinical evaluation performed by the two specialists comparing contrast and non-contrast CT attenuated PET images showed weighted kappa values of 0.92 (doctor A) and 0.82 (doctor B). No contrast-introduced artefacts were found.ConclusionThis study demonstrates that CT scans with IV contrast agent can be used for attenuation correction of the PET data in combined modality PET/CT scanning, without changing the clinical diagnostic interpretation.


NeuroImage | 2014

Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone☆

Flemming Andersen; Claes Ladefoged; Thomas Beyer; Sune Høgild Keller; Adam E. Hansen; Liselotte Højgaard; Andreas Kjær; Ian Law; Søren Holm

AIM Combined PET/MR systems have now become available for clinical use. Given the lack of integrated standard transmission (TX) sources in these systems, attenuation and scatter correction (AC) must be performed using the available MR-images. Since bone tissue cannot easily be accounted for during MR-AC, PET quantification can be biased, in particular, in the vicinity of the skull. Here, we assess PET quantification in PET/MR imaging of patients using phantoms and patient data. MATERIALS AND METHODS Nineteen patients referred to our clinic for a PET/CT exam as part of the diagnostic evaluation of suspected dementia were included in our study. The patients were injected with 200MBq [(18)F]FDG and imaged with PET/CT and PET/MR in random sequence within 1h. Both, PET/CT and PET/MR were performed as single-bed acquisitions without contrast administration. PET/CT and PET/MR data were reconstructed following CT-based and MR-based AC, respectively. MR-AC was performed based on: (A) standard Dixon-Water-Fat segmentation (DWFS), (B) DWFS with co-registered and segmented CT bone values superimposed, and (C) with co-registered full CT-based attenuation image. All PET images were reconstructed using AW-OSEM, with neither resolution recovery nor time-of-flight option employed. PET/CT (D) or PET/MR (A-C) images were decay-corrected to the start time of the first examination. PET images following AC were evaluated visually and quantitatively using 10 homeomorphic regions of interest drawn on a transaxial T1w-MR image traversing the central basal ganglia. We report the relative difference (%) of the mean ROI values for (A)-(C) in reference to PET/CT (D). In a separate phantom experiment a 2L plastic bottle was layered with approximately 12mm of Gypsum plaster to mimic skull bone. The phantom was imaged on PET/CT only and standard MR-AC was performed by replacing hyperdense CT attenuation values corresponding to bone (plaster) with attenuation values of water. PET image reconstruction was performed with CT-AC (D) and CT-AC using the modified CT images corresponding to MR-AC using DWFS (A). RESULTS PET activity values in patients following MR-AC (A) showed a substantial radial dependency when compared to PET/CT. In all patients cortical PET activity was lower than the activity in the central region of the brain (10-15%). When adding bone attenuation values to standard MR-AC (B and C) the radial gradient of PET activity values was removed. Further evaluation of PET/MR activity following MR-AC (A) relative to MR-AC (C) using the full CT for attenuation correction showed an underestimation of 25% in the cortical regions and 5-10% in the central regions of the brain. Observations in patients were replicated by observations from the phantom study. CONCLUSION Our phantom and patient data demonstrate a spatially varying bias of the PET activity in PET/MR images of the brain when bone tissue is not accounted for during attenuation correction. This has immediate implications for PET/MR imaging of the brain. Therefore, refinements to existing MR-AC methods or alternative strategies need to be found prior to adopting PET/MR imaging of the brain in clinical routine and research.


Journal of Cerebral Blood Flow and Metabolism | 2009

Evaluation of the Novel 5-HT4 Receptor PET Ligand [11C]SB207145 in the Göttingen Minipig

Birgitte R. Kornum; Nanna Marie Lind; Nic Gillings; Lisbeth Marner; Flemming Andersen; Gitte M. Knudsen

This study investigates 5-hydroxytryptamine 4 (5-HT4) receptor binding in the minipig brain with positron emission tomography (PET), tissue homogenate-binding assays, and autoradiography in vitro. The cerebral uptake and binding of the novel 5-HT4 receptor radioligand [11C]SB207145 in vivo was modelled and the outcome compared with postmortem receptor binding. Different models for quantification of [11C]SB207145 binding were evaluated: One-tissue and two-tissue compartment kinetic modelling, Logan arterial input, and three different reference tissue models. We report that the pig autoradiographic 5-HT4 receptor distribution resembles the human 5-HT4 receptor distribution with the highest binding in the striatum and no detectable binding in the cerebellum. We found that in the minipig brain [11C]SB207145 follows one-tissue compartment kinetics, and the simplified reference tissue model provides stable and precise estimates of the binding potential in all regions. The binding potentials calculated for striatum, midbrain, and cortex from the PET data were highly correlated with 5-HT4 receptor concentrations determined in brain homogenates from the same regions, except for hippocampus where PET-measurements significantly underestimate the 5-HT4 receptor binding, probably because of partial volume effects. This study validates the use of [11C]SB207145 as a promising PET radioligand for in vivo brain imaging of the 5-HT4 receptor in humans.


European Journal of Radiology | 2014

Whole-body PET/MRI: The effect of bone attenuation during MR-based attenuation correction in oncology imaging

M.C. Aznar; R. Sersar; J. Saabye; Claes Ladefoged; Flemming Andersen; Jacob H. Rasmussen; J. Löfgren; Thomas Beyer

PURPOSE In combined PET/MRI standard PET attenuation correction (AC) is based on tissue segmentation following dedicated MR sequencing and, typically, bone tissue is not represented. We evaluate PET quantification in whole-body (WB)-PET/MRI following MR-AC without considering bone attenuation and then investigate different strategies to account for bone tissue in clinical PET/MR imaging. To this purpose, bone tissue representation was extracted from separate CT images, and different bone representations were simulated from hypothetically derived MR-based bone classifications. METHODS Twenty oncology patients referred for a PET/CT were injected with either [18F]-FDG or [18F]-NaF and imaged on PET/CT (Biograph TruePoint/mCT, Siemens) and PET/MRI (mMR, Siemens) following a standard single-injection, dual-imaging clinical WB-protocol. Routine MR-AC was based on in-/opposed-phase MR imaging (orgMR-AC). PET(/MRI) images were reconstructed (AW-OSEM, 3 iterations, 21 subsets, 4mm Gaussian) following routine MR-AC and MR-AC based on four modified attenuation maps. These modified attenuation maps were created for each patient by non-linear co-registration of the CT images to the orgMR-AC images, and adding CT bone mask values representing cortical bone: 1200HU (cortCT), spongiosa bone: 350HU (spongCT), average CT value (meanCT) and original CT values (orgCT). Relative difference images of the PET following AC using the modified attenuation maps were compared. SUVmean was calculated in anatomical reference regions and for PET-positive lesions. RESULTS The relative differences in SUVmean across patients following orgMR-AC and orgCT in soft tissue lesions and in bone lesions were similar (range: 0.0% to -22.5%), with an average underestimation of SUVmean of 7.2% and 10.0%, respectively when using orgMR-AC. In bone lesions, spongCT values were closest to orgCT (median bias of 1.3%, range: -9.0% to 13.5%) while the overestimation of SUVmean with respect to orgCT was highest for cortCT (40.8%, range: 1.5% to 110.8%). For soft tissue lesions the bias was highest using cortCT (13.4%, range: -2.3% to 17.3%) and lowest for spongCT (-2.2%, range: 0.0% to -13.7%). CONCLUSIONS In PET/MR imaging using standard MR-AC PET uptake values in soft lesions and bone lesions are underestimated by about 10%. In individual patients this bias can be as high as 22%, which is significant during clinical follow-up exams. If bone segmentation is available, then assigning a fixed attenuation value of spongious bone to all bone structures appears reasonable and results in only a minor bias of 5%, or less in uptake values of soft tissue and bone lesions.


Physics in Medicine and Biology | 2015

Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging

Claes Ladefoged; Didier Benoit; Ian Law; Søren Holm; Andreas Kjær; Liselotte Højgaard; Adam E. Hansen; Flemming Andersen

The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [(18)F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R(*)2 values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within  ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.


Acta Oncologica | 2015

Prospective phase II trial of image-guided radiotherapy in Hodgkin lymphoma: benefit of deep inspiration breath-hold.

Peter Meidahl Petersen; Marianne C. Aznar; Anne Kiil Berthelsen; Annika Loft; Deborah A. Schut; Maja V. Maraldo; Mirjana Josipovic; Thomas Levin Klausen; Flemming Andersen; Lena Specht

Abstract Background. Long-term Hodgkin lymphoma (HL) survivors have an increased risk of late cardiac morbidity and secondary lung cancer after chemotherapy and mediastinal radiotherapy. In this prospective study we investigate whether radiotherapy with deep inspiration breath-hold (DIBH) can reduce radiation doses to the lungs, heart, and cardiac structures without compromising the target dose. Patients and methods. Twenty-two patients (14 female, 8 male), median age 30 years (18–65 years), with supra-diaphragmatic HL were enrolled and had a thoracic PET/CT with DIBH in addition to staging FDG-PET/CT in free breathing (FB) and a planning CT in both FB and DIBH. For each patient an involved-node radiotherapy plan was done for both DIBH and FB, and the doses to the lungs, heart, and female breasts were recorded prospectively. Mean doses to the heart valves and coronary arteries were recorded retrospectively. Patients were treated with the technique yielding the lowest doses to normal structures. Results. Nineteen patients were treated with DIBH and three with FB. DIBH reduced the mean estimated lung dose by 2.0 Gy (median: 8.5 Gy vs. 7.2 Gy) (p < 0.01) and the mean heart dose by 1.4 Gy (6.0 Gy vs. 3.9 Gy) (p < 0.01) compared to FB. The lung and heart V20Gy were reduced with a median of 5.3% and 6.3%. Mean doses to the female breasts were equal with FB and DIBH. Conclusion. DIBH can significantly decrease the estimated mean doses to the heart and lungs without lowering the dose to the target in radiotherapy for patients with mediastinal HL.


ieee nuclear science symposium | 2009

Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction

Oline Vinter Olesen; Merence Sibomana; Sune Høgild Keller; Flemming Andersen; Jørgen Arendt Jensen; Søren Holm; Claus Svarer; Liselotte Højgaard

In this paper, the resolution of the Siemens high resolution research tomograph (HRRT) was centrally (r < 60 mm) homogenous with a FWHM of 1.4 mm for 18F-FDG in air. This was where the main part of the brain is located if the patient has been positioned correctly. The 1.4 mm resolution was obtained using the newly develop 3D-OSEM PSF reconstruction algorithm, which was a significant improvement over 3D-OSEM reconstruction without PSF. The algorithm uses a simple PSF model that was the same for all the pixels in the FOV and does not regulate for the circular/octagonal scanner geometry. This supports that the FWHM of the radial axis is increasing with the distance from the center for r > 60mm.


European Journal of Radiology | 2013

Clinical evaluation of PET image reconstruction using a spatial resolution model

Flemming Andersen; Thomas Levin Klausen; Annika Loft; Thomas Beyer; Søren Holm

PURPOSE PET image resolution is variable across the measured field-of-view and described by the point spread function (PSF). When accounting for the PSF during PET image reconstruction image resolution is improved and partial volume effects are reduced. Here, we evaluate the effect of PSF-based reconstruction on lesion quantification in routine clinical whole-body (WB) PET/CT imaging. MATERIALS AND METHODS 41 oncology patients were referred for a WB-PET/CT examination (Biograph 40 TruePoint). Emission data were acquired at 2.5 min/bed at 1 hpi of 400 MBq [18F]-FDG. Attenuation-corrected PET images were reconstructed on 336 × 336-matrices using: (R1) standard AW-OSEM (4 iter, 8 subsets, 4 mm Gaussian) and (R2) AW-OSEM with PSF (3 iter, 21 subsets, 2 mm). Blinded and randomised reading of R1- and R2-PET images was performed. Individual lesions were located and counted independently on both sets of images. The relative change in PET quantification (SUVmax, SUVmean, volume) of lesions seen on R1 and R2 is reported as (R2-R1)/R1. Furthermore, SUVmax and SUVmean was measured for a 3 cm spherical norm region in the right lobe of the healthy liver for R1 and R2. RESULTS Clinical reading revealed 91 and 103 positive lesions for R1 and R2, respectively. For all lesions SUVmax (R2) was higher than SUVmax (R1). Regression analysis indicated that the relative increase in SUVmax (and SUVmean) decreased with lesion size, whilst it increased with increasing radial distance from the centre of the field of view (FOV). There was no significant difference in SUVmean in homogenous liver tissue between R1 and R2. CONCLUSION In whole-body FDG-PET/CT using routine clinical protocols, PSF-based PET reconstruction increases lesion detection and affects SUVmax measurements compared to standard AW-OSEM PET reconstruction.


Hydrobiologia | 1988

Pelagic food web processes in an oligotrophic lake

Morten Søndergaard; Bo Riemann; Lars Møller Jensen; Niels Jørgensen; Peter Koefoed Bjørnsen; Michael Olesen; Jens Nicolai Brink Larsen; Ole Geertz-Hensen; J P Hansen; Kirsten Christoffersen; Anne-Mette Jespersen; Flemming Andersen; Suzanne Bosselmann

Major pelagic carbon pathways, including primary production, release of extracellular products (EOC), bacterial production and zooplankton grazing were measured in oligotrophic Lake Almind (Denmark) and in enclosures (7 m3) subjected to artificial eutrophication. Simultaneous measurements at three days interval of carbon exchange rates and pools allowed the construction of carbon flow scenarios over a nineteen day experimental period.The flow of organic carbon was dominated by phytoplankton EOC release, which amounted from 44 to 58% of the net fixation of inorganic carbon. Gross bacterial production accounted for 33 to 75% of the primary production. The lower values of EOC release (44%) and bacterial production (33%) were found in the enclosures with added nutrients. The release of recently fixed photosynthetic products was the most important source of organic carbon to the bacterioplankton. Uptake of dissolved free amino acids was responsible for 52 to 62% of the gross bacterial production. Thus, amino acids constituted a significant proportion of the EOC. Zooplankton (< 50 µm) grazing on algae and bacteria accounted only for a minor proportion of the particulate production in May. Circumstantial evidence is presented that suggests the chrysophycean alga Dinobryon was the most important bacterial remover.The results clearly demonstrated EOC release and bacterial metabolism to be key processes in pelagic carbon cycling in this oligotrophic lake.


The Journal of Nuclear Medicine | 2012

Methods for Motion Correction Evaluation Using 18F-FDG Human Brain Scans on a High-Resolution PET Scanner

Sune Høgild Keller; Merence Sibomana; Oline Vinter Olesen; Claus Svarer; Søren Holm; Flemming Andersen; Liselotte Højgaard

Many authors have reported the importance of motion correction (MC) for PET. Patient motion during scanning disturbs kinetic analysis and degrades resolution. In addition, using misaligned transmission for attenuation and scatter correction may produce regional quantification bias in the reconstructed emission images. The purpose of this work was the development of quality control (QC) methods for MC procedures based on external motion tracking (EMT) for human scanning using an optical motion tracking system. Methods: Two scans with minor motion and 5 with major motion (as reported by the optical motion tracking system) were selected from 18F-FDG scans acquired on a PET scanner. The motion was measured as the maximum displacement of the markers attached to the subjects head and was considered to be major if larger than 4 mm and minor if less than 2 mm. After allowing a 40- to 60-min uptake time after tracer injection, we acquired a 6-min transmission scan, followed by a 40-min emission list-mode scan. Each emission list-mode dataset was divided into 8 frames of 5 min. The reconstructed time-framed images were aligned to a selected reference frame using either EMT or the AIR (automated image registration) software. The following 3 QC methods were used to evaluate the EMT and AIR MC: a method using the ratio between 2 regions of interest with gray matter voxels (GM) and white matter voxels (WM), called GM/WM; mutual information; and cross correlation. Results: The results of the 3 QC methods were in agreement with one another and with a visual subjective inspection of the image data. Before MC, the QC method measures varied significantly in scans with major motion and displayed limited variations on scans with minor motion. The variation was significantly reduced and measures improved after MC with AIR, whereas EMT MC performed less well. Conclusion: The 3 presented QC methods produced similar results and are useful for evaluating tracer-independent external-tracking motion-correction methods for human brain scans.

Collaboration


Dive into the Flemming Andersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam E. Hansen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Andreas Kjær

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Søren Holm

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Ian Law

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Beyer

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Annika Loft

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge